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Kolmogorov equations in Hilbert spaces

Consider a separable Hilbert space H, a linear operator
A : D (A) ⊂ H → H, a bounded Borel measurable operator B : H → H,
and a selfadjoint bounded operator Q : H → H. We investigate the
equation

∂tU (t, x) =
1
2
Tr
(
QD2U (t, x)

)
+ 〈Ax + B (x) ,DU (t, x)〉

U (0, x) = U0 (x) .

The backward form of this equation corresponds to the SDE in the Hilbert
space H

dXt = (AXt + B (Xt )) dt +
√
QdWt

which may be the abstract formulation of an SPDE.
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The main idea (Da Prato) to investigate

∂tU (t, x) =
1
2
Tr
(
QD2U (t, x)

)
+ 〈Ax + B (x) ,DU (t, x)〉

U (0, x) = U0 (x) .

is to solve the "linear" case (Ornstein-Uhlenbeck)

∂tV (t, x) =
1
2
Tr
(
QD2V (t, x)

)
+ 〈Ax ,DU (t, x)〉

V (0, x) = V0 (x)

using Probability (Gaussian stochastic analysis) and the nonlinear case by
perturbation, analytically.
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Called (StV0) (x) the solution of

∂tV (t, x) =
1
2
Tr
(
QD2V (t, x)

)
+ 〈Ax ,DU (t, x)〉

V (0, x) = V0 (x)

we write the original equation in the perturbative form

U (t, x) = (StU0) (x) +
∫ t

0
(St−s 〈B (·) ,DU (s, ·)〉) (x) ds.
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Linear case

The "linear" case (Ornstein-Uhlenbeck)

∂tV (t, x) =
1
2
Tr
(
QD2V (t, x)

)
+ 〈Ax ,DU (t, x)〉

V (0, x) = V0 (x)

can be solved explicitly. We do not enter the nontrivial question of the
meaning of the terms and in which sense it is satisfied, but simply state,
by analogy with the finite dimensional case, that the solution to this
equation is given by

V (t, x) = E [V0 (X xt )]

where
dX xt = AX

x
t dt +

√
QdWt , X x0 = x

or explicitly (we use semigroup theory here)

X xt = e
tAx +

∫ t

0
e(t−s)A

√
QdWs .
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Consider for simplicity the diagonal case, A = A∗ with compact resolvent,
Aek = −λkek :

X xt = ∑
k

(
e−tλk xk +

∫ t

0
e−(t−s)λk σkdβs

)
ek .

It is well defined when

∑
k

∫ T

0
e−2(t−s)λk σ2kds < ∞

namely

∑
k

1− e−2T λk

2λk
σ2k < ∞

namely when

∑
k

σ2k
λk
< ∞.
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Example

On the torus Td = Rd/Zd take H = L2
(
Td
)
with zero mean (scalar

valued, for simplicity; heat equation instead of Navier-Stokes), A = ∆,

ek (x) = exp (2πik · x) , k ∈ Zd

Aek = −4π2 |k |2 ek (namely λk = 4π2 |k |2 ).
If we want to deal with space-time white noise, namely σ2k = 1, we need

∑
k

σ2k
λk
=

1
4π2 ∑

k∈Zd \{0}

1

|k |2
< ∞

hence it is true only in
d = 1.
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Summary of notations, equations, assumptions:

U (t, x) = (StU0) (x) +
∫ t

0
(St−s 〈B (·) ,DU (s, ·)〉) (x) ds

(StV0) (x) = E [V0 (X xt )]

X xt = ∑
k

(
e−tλk xk +

∫ t

0
e−(t−s)λk σkdβs

)
ek

∑
k

σ2k
λk
< ∞, B ∈ Bb (H,H) .

Franco Flandoli, Scuola Normale Superiore () SPDEs III Bologna 2019 9 / 32



Clearly the diffi culty in using iteratively the equation

U (t, x) = (StU0) (x) +
∫ t

0
(St−s 〈B (·) ,DU (s, ·)〉) (x) ds

is in the derivative DU (s, ·) on the RHS. The problem can be solved if we
have an estimate of the form

‖DStV0‖ ≤ C (t) ‖V0‖

where ‖·‖ is some kind of uniform or Lp norm.
For general problems, Malliavin calculus or Bismut-Elworthy-Li formula are
good tools. Here the process behind St is Gaussian and thus we have an
explicit formula for DStV0 which does not involve derivatives of V0.
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Introduce

Q (t) =
∫ t

0
esAQesA

∗
ds.

It is the covariance operator, in the "space variable", of the process

X xt = e
tAx +

∫ t

0
e(t−s)A

√
QdWs

E
[〈
X xt − etAx , h

〉 〈
X xt − etAx , k

〉]
= 〈Q (t) h, k〉 .

If Q (t) is injective, we deduce

E
[〈
X xt − etAx ,Q (t)

−1/2 f
〉 〈
X xt − etAx ,Q (t)

−1/2 g
〉]
= 〈f , g〉 .

The following fact is true: when Q (t) is injective, there is a rigorous
definition, as an L2-limit, for the random variable formally denoted by〈

Q (t)−1/2
(
X xt − etAx

)
, h
〉

and it is centered Gaussian:

N
(
0, ‖h‖2H

)
.

Franco Flandoli, Scuola Normale Superiore () SPDEs III Bologna 2019 11 / 32



Theorem

Assume R
(
etA
)
⊂ R

(
Q (t)1/2

)
for t > 0, and set

Λ (t) = Q (t)−1/2 etA. Then

〈h,D (StV0) (x)〉 = −E
[
V0 (X xt )

〈
Λ (t) h,Q (t)−1/2

(
X xt − etAx

)〉]
.

Proof. (
S (n)t V0

)
(x) = E [V0 (X

x ,n
t )]

X xt =
n

∑
k=1

(
e−tλk xk +

∫ t

0
e−(t−s)λk σkdβs

)
ek

∼ ⊗N
(
e−tλk xk ,

∫ t

0
e−2(t−s)λk σ2kds

)
= ⊗N

(
mk (t, xk ) , σ

2
k (t)

)
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With the notation y = (y1, ..., yn),

(
S (n)t V0

)
(x)

=
∫

Rn
V0 (y)C (n, t) exp

(
−1
2

n

∑
k=1

(yk −mk (t, xk ))2

σ2k (t)

)
dy

∂i

(
S (n)t V0

)
(x)

= −
∫

Rn

(yi −mi (t, xk )) e−tλi
σ2i (t)

V0 (y)C (n, t)

exp

(
−1
2

n

∑
k=1

(yk −mk (t, xk ))2

σ2k (t)

)
dy

= −E

[
V0 (X

x ,n
t )

((X x ,nt )i −mi (t, xk )) e−tλi
σ2i (t)

]
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Hence

∂i

(
S (n)t V0

)
(x)

= −
∫

Rn

(yi −mi (t, xk )) e−tλi
σ2i (t)

V0 (y)C (n, t)

exp

(
−1
2

n

∑
k=1

(yk −mk (t, xk ))2

σ2k (t)

)
dy

= −E

[
V0 (X

x ,n
t )

((X x ,nt )i −mi (t, xk )) e−tλi
σ2i (t)

]
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Hence

〈h,D (StV0) (x)〉 = −E

[
V0 (X xt )

∞

∑
i=1

((X xt )i −mi (t, xk )) e−tλi
σ2i (t)

hi

]
= −E

[
V0 (X xt )

〈
Q (t)−1 etAh,X xt − etAx

〉]
.
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Now the question is how to use the formula

〈h,D (StV0) (x)〉 = −E
[
V0 (X xt )

〈
Λ (t) h,Q (t)−1/2

(
X xt − etAx

)〉]
We know that〈

Λ (t) h,Q (t)−1/2
(
X xt − etAx

)〉
∼ N

(
0, ‖Λ (t) h‖2H

)
.

Hence we simply have

Theorem

|〈h,D (StV0) (x)〉| ≤ ‖Λ (t) h‖H E
[
|V0 (X xt )|

2
]1/2

.

In particular,

‖D (StV0) (x)‖H ≤ ‖Λ (t)‖L(H ,H ) ‖V0‖∞∫
H
‖D (StV0) (x)‖2H µ (dx) ≤ ‖Λ (t)‖2L(H ,H )

∫
H

E
[
|V0 (X xt )|

2
]

µ (dx)

The problem is to have a good control of ‖Λ (t)‖L(H ,H ) for t → 0.
Franco Flandoli, Scuola Normale Superiore () SPDEs III Bologna 2019 16 / 32



The first inequality

‖D (StV0) (x)‖H ≤ ‖Λ (t)‖L(H ,H ) ‖V0‖∞

will be used in the C 0-theory. The second one∫
H
‖D (StV0) (x)‖2H µ (dx) ≤ ‖Λ (t)‖2L(H ,H )

∫
H

E
[
|V0 (X xt )|

2
]

µ (dx)

in the L2-theory, taking as µ an invariant measure of X xt , because in such
a case ∫

H
|V0 (X xt )|

2 µ (dx) =
∫
H
|V0 (x)|2 µ (dx)

hence ∫
H
‖D (StV0) (x)‖2H µ (dx) ≤ ‖Λ (t)‖2L(H ,H ) ‖V0‖

2
L2(H ,µ) .

Franco Flandoli, Scuola Normale Superiore () SPDEs III Bologna 2019 17 / 32



The problem, as said above, is to have a good control of ‖Λ (t)‖L(H ,H )
for t → 0, Λ (t) = Q (t)−1/2 etA, Q (t) =

∫ t
0 e

sAQesA
∗
ds.

If the noise is "regular in the space variable" then Q (t)−1 is a very
"irregular" operator. Consequence: this approach works for cylindrical
noise (space-time white noise) or little modifications but not in general.
Example: Q = I , A = A∗, t ∈ [0,T ]:

Q (t) ek =
∫ t

0
e2sAekds =

1− e−2tλk
2λk

Λ (t) ek =
√
2λke−tλk√
1− e−2tλk

=
1√
t
g (tλk ) , g (s) ≤ 1

‖Λ (t)‖L(H ,H ) ≤
1√
t
.
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g (s) =

√
2se−s√
1− e−2s

, g (s) ≤ 1
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The analogous result for second derivatives is similar but more lengthy and
we omit the proof.

Theorem

〈
k,D2 (StV0) (x) h

〉
= −E

[
V0 (X xt ) ·

{〈
Λ (t) h,Q (t)−1/2

(
X xt − etAx

)〉
·

·
〈

Λ (t) k,Q (t)−1/2
(
X xt − etAx

)〉
− 〈Λ (t) h,Λ (t) k〉

}]
Theorem ∥∥D2 (StV0) (x)∥∥ ≤ √2 ‖Λ (t)‖2L(H ,H ) ‖V0‖∞ .
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With these results in our hands we approach

U (t, x) = (StU0) (x) +
∫ t

0
(St−s 〈B (·) ,DU (s, ·)〉) (x) ds

in the space
U ∈ C

(
[0,T ] ;C 1 (H,R)

)
under the assumption

B ∈ C ([0,T ] ;C (H,H)) .

Theorem

If limt→0
∫ t
0 ‖Λ (s)‖L(H ,H ) ds = 0, given U0 ∈ C 1 (H,R) there is a unique

solution U ∈ C
(
[0,T ] ;C 1 (H,R)

)
of the Kolmogorov equation.
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The idea of proof is simply a fixed point in the space
C
(
[0,T ] ;C 1 (H,R)

)
. Contraction of the map

Λ : C
(
[0,T ] ;C 1 (H,R)

)
→ C

(
[0,T ] ;C 1 (H,R)

)
Λ (U) (t) = (StU0) (x) +

∫ t

0
(St−s 〈B (·) ,DU (s, ·)〉) (x) ds

is guaranteed by the estimate

‖DΛ (U1) (t)−DΛ (U2) (t)‖∞

≤
∫ t

0
‖DSt−s 〈B (·) ,DU1 (s, ·)−DU2 (s, ·)〉‖∞ ds

≤
∫ t

0
‖Λ (t − s)‖L(H ,H ) ‖〈B (·) ,DU1 (s, ·)−DU2 (s, ·)〉‖∞ ds

where we have used

‖D (StV0) (x)‖H ≤ ‖Λ (t)‖L(H ,H ) ‖V0‖∞ .
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Putting together all the previous pieces plus some additional detail we get:

Theorem
Consider the SDE in Hilbert space H

dXt = (AXt + B (Xt )) dt + dWt , X0 = x0

where Wt is cylindrical, A = A∗, A−1 is trace class, B : H → H is
continuous and bounded. Then there exists a unique solution in law.

With some more effort based on the second derivatives and the assumption

B ∈ C α
b (H,H)

it is possible to prove pathwise uniqueness (Da Prato-F. JFA 2010). With
more effort one can work in L2 (H, µ) where µ is the invariant measure of
the linear equation and prove a similar result when

B ∈ L∞ (H,H)

(Da Prato-F.-Priola-Röckner, AoP 2013). However, the result in this case
has been proved only for µ-a.e. x0 ∈ H.
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Open problem 1

The main open problem is to extend previous results to drifts B relevant
for Mathematical Physics.
An example like Navier-Stokes has the spaces and operators:

H ∼ L2 (precisely vector valued, divergence free with b.c.)

A ∼ ∆ (up to projection to divergence free fields)

B (u) = −u · ∇u (as above)

du = (Au + B (u)) dt +
√
QdWt .

The operator B is just "polynomial" in the variables (not irregular as a
function only of class C α (H,H)) but:

quadratically unbounded, opposite to ‖B (u)‖H ≤ C
defined only on subspaces (B : W s ,2 → H for s large enough), or with
range in larger spaces (B : H → W−r ,2).
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Think to the calculation

‖DΛ (U1) (t)−DΛ (U2) (t)‖∞

≤
∫ t

0
‖DSt−s 〈B (·) ,DU1 (s, ·)−DU2 (s, ·)〉‖∞ ds

≤
∫ t

0
‖Λ (t − s)‖L(H ,H ) ‖〈B (·) ,DU1 (s, ·)−DU2 (s, ·)〉‖∞ ds.

When B is not bounded, how to close the estimate?
When B is not defined over H but only on a smaller space, what kind of
properties are needed to make estimates?
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Da Prato and Debussche JMPA 2003 succeded to investigate precisely the
case of 3D Navier-Stokes equations but the diffi culty mentioned above
reflected into poor estimates on the derivatives of Kolmogorov equations.

These estimates are not suffi cient to prove uniqueness.

Thus the question of good results on Kolmogorov equations when B is like
those of fluid mechanics (or other applications in Mathematical Physics)
remains open.
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Open problem 2

Another question is about degenerate Kolmogorov equations. This is
motivated by the transport noise used for Euler equations:

dω+ u · ∇ωdt +
∞

∑
n=1

σnen · ∇ω ◦ dβn = 0.

In abstract terms: the diffusion coeffi cient is state-dependent and vanishes
when ∇ω = 0.
The associated Kolmogorov equation is

∂tU (t,ω) + 〈u (ω) · ∇ω,DU (t,ω)〉

=
1
2

∞

∑
n=1

σ2n 〈en · ∇ω,D 〈en · ∇ω,DU (t,ω)〉〉 .

It is a fully open problem how to study this equation in uniform (Hölder)
topologies. We have done some preliminary work in L2 (H, µ) spaces
(F.-Luo, arXiv).
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In finite dimensions it would be

dXt = b (Xt ) +
N

∑
n=1

CnXt ◦ dWn

∂tU = b (x) · ∇U +
1
2

N

∑
n=1

Cnx · ∇ (Cnx · ∇U) .
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Open problem 3

Finally let us mention an open problem related to applications.
Assume an equation of the form

du = (Au + B (u)) dt +
√
QdWt

is used in some application, like weather or climate prediction.
Given an uncertain initial condition, namely a random variable u0, maybe
our theorems guarantee well posedness of the SPDE.
Which is the probability to have, at the future time T , a value of some
quantity larger than a thresold?

P (Φ (u (T )) > λ) =?
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A classical method is to simulate several times the SPDE, namely for
several realizations of the i.c. and the noise. Very expensive! Monte Carlo
has a rate of convergence of order 1√

N
.

In principle, the law of u (t), call it µt , satisfies the Fokker-Planck
equation, in weak form∫

H
F (t, x) µt (dx)−

∫
H
F (0, x) µ0 (dx) =

∫ t

0
(∂tF + LF ) µs (dx) ds

where LF is the Kolmogorov operator. Can we simulate the
Fokker-Planck equation?

P (Φ (u (T )) > λ) = µT {y ∈ H : Φ (y) > λ} .

Or alternatively, can we simulate the Kolmogorov equation (it gives
expected values)?
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Since numerical simulation of parabolic PDEs is limited in practice to
small dimension (usually ≤ 3), we have no chance to apply a trivial finite
dimensional approximation.
New ideas?

Maybe it is possible to design effi cient schemes based on

U (t, x) = (StU0) (x) +
∫ t

0
(St−s 〈B (·) ,DU (s, ·)〉) (x) ds.

Spectral methods based on Fourier analysis of L2 (H, µ)? (cf.
Delgado-F., IDAQP 2016).
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