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Kolmogorov equations

Let us recall first some elements in finite dimensions.
In Rd , consider the SDE

dXt = b (t,Xt ) dt + σdWt , X0 = x0

where
b : [0,T ]×Rd → Rd

is at least measurable, σ is a real number, x0 ∈ Rd . The associated
backward Kolmogorov equation is

∂tu (t, x) +
σ2

2
∆u (t, x) + b (t, x) · ∇u (t, x) = 0

u (T , x) = u0 (x) .
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We may rewirte it forward simply by setting

U (t, x) = u (T − t, x) , B (t, x) = b (T − t, x)

∂tU (t, x) =
σ2

2
∆U (t, x) + B (t, x) · ∇U (t, x)

U (0, x) = u0 (x) .

Any time it is confusing to state a theorem for the backward equation, we
formulate it for the corresponding forward one. But in doing computations
involving both the SDE and Kolmogorov equation, it is better to use the
backward formulation.
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Assume Xt is a solution of the SDE and u (t, x) is a solution of class C 1,2

of backward Kolmogorov equation. Then

du (t,Xt ) =

(
∂tu (t,Xt ) +

σ2

2
∆u (t,Xt ) + b (t,Xt ) · ∇u (t,Xt )

)
dt

+σ∇u (t,Xt ) · dWt

hence
du (t,Xt ) = σ∇u (t,Xt ) · dWt .

If

E

∫ T

0
|∇u (t,Xt )|2 dt < ∞

then
E [u0 (XT )] = u (0, x0) .
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The formula
E [u0 (XT )] = u (0, x0)

can be generalized to

E [φ (Xt )] = uφ,t (0, x0)

by taking as uφ,t the solution of the backward equation

∂suφ,t (s, x) +
σ2

2
∆uφ,t (s, x) + b (s, x) · ∇uφ,t (s, x) = 0 on [0, t]

uφ,t (t, x) = φ (x) .

If µt denotes the law of Xt , the previous formula identifies µt when φ can
be taken arbitrarily: ∫

Rd
φ (x) µt (dx) = uφ,t (0, x0) .
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Similarly, the formula

E [u0 (XT )] = u (0, x0)

can be generalized to

u (t, x) = E
[
u0
(
X t ,xT

)]
by taking as X t ,xT the solution of the SDE

dsX t ,xs = b
(
s,X t ,xs

)
ds + σdWs on [t,T ] , X t ,xt = x .

The previous formula gives a probabilistic representation of the solution
u (t, x) of a PDE in terms of solutions of SDE’s.
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Let us go back to the link (µt = L (Xt ))

E [φ (Xt )] = uφ,t (0, x0)∫
Rd

φ (x) µt (dx) = uφ,t (0, x0)

where
dXt = b (t,Xt ) dt + σdWt , X0 = x0

and uφ,t the solution of the backward equation

∂suφ,t (s, x) +
σ2

2
∆uφ,t (s, x) + b (s, x) · ∇uφ,t (s, x) = 0 on [0, t]

uφ,t (t, x) = φ (x) .

It may be used to prove uniqueness in law for the SDE: the law µt is
identified (then one has to develop a further argument to pass from
marginals to the law on path space; there are different methods, see
Stroock-Varadhan or Ambrosio-Trevisan).
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Conceptually: an existence result for backward Kolmogorov corresponds to
a uniqueness result in law for the SDE.

This is not surprising if we recall that µt satisfies the forward Kolmogorov
equation, more properly called Fokker-Planck equation, and the backward
Kolmogorov equation is the formal dual of Fokker-Planck equation.

Hence it is a form of the usual duality principle between existence and
uniqueness.
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Fokker-Planck equation

If φ (t, x) is a smooth compact support test function, then

dφ (t,Xt ) =

(
∂tφ (t,Xt ) +

σ2

2
∆φ (t,Xt ) + b (t,Xt ) · ∇φ (t,Xt )

)
dt

+σ∇φ (t,Xt ) · dWt

hence (here we have E
∫ T
0 |∇φ (t,Xt )|2 dt < ∞)

E [φ (T ,XT )]− φ (0, x0)

= E

∫ T

0

(
∂tφ (t,Xt ) +

σ2

2
∆φ (t,Xt ) + b (t,Xt ) · ∇φ (t,Xt )

)
dt

〈µT , φT 〉 − 〈µ0, φ0〉 =
∫ T

0

〈
µt , ∂tφt +

σ2

2
∆φt + b · ∇φt

〉
dt.
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This is the weak form of Fokker-Planck equation

〈µT , φT 〉 − 〈µ0, φ0〉 =
∫ T

0

〈
µt , ∂tφt +

σ2

2
∆φt + b · ∇φt

〉
dt.

If µt has a smooth density ρ (t, x), then

∂tρ (t, x) =
σ2

2
∆ρ (t, x)− div (b (t, x) ρ (t, x)) .

We see that backward Kolmogorov is the formal dual of this equation.
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Uniqueness using Kolmogorov

Obviously when b is locally Lipschitz continuous, uniqueness for the SDE
can be proved directly, by Gronwall type arguments.

When b is less regular and σ = 0, uniqueness usually fails, as the classical
Peano examples show.

In the stochastic case, σ 6= 0, uniqueness is "restored" by noise, even if b
is considerably less regular than locally Lipschitz.

One of the major tools is the use of Kolmogorov equations (others are
Girsanov formula, Davie methods).
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It is necessary here to enter the difference between uniqueness in law and
pathwise uniqueness.
For the SDE

dXt = b (t,Xt ) dt + σdWt for t ∈ [0,T ] , X0 = x0

we say we have uniqueness in law when the law is the same on
C
(
[0,T ] ;Rd

)
for all possible filtered probability spaces (Ω,F ,Ft ,P),

d-dimensional Ft -BMs W and continuous Ft -adapted processes X solving
the SDE on (Ω,F ,Ft ,P).
We say we have pathwise uniqueness when, given an arbitrary probability
space (Ω,F ,P) and d-dimensional BMs W , if X (1)t ,X (2)t are continuous

adapted processes solving the SDE on (Ω,F ,P), then X (1)t ,X (2)t are
indistinguishable.
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I want to explain the rough principle:

if Kolmogorov equation has solutions with reasonable gradient
estimates, then we have uniqueness in law

if Kolmogorov equation has solutions with uniform gradient estimates
and reasonable control on second derivatives, we have pathwise
uniqueness.

In both cases, if b is so irregular that there could be examples of
non-uniqueness for σ = 0, we say that there is a regularization by noise.
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The first half of the principle is already clear, at informal level: we have
seen above that if

E

∫ t

0

∣∣∇uφ,t (t,Xt )
∣∣2 dt < ∞

then we prove ∫
Rd

φ (x) µt (dx) = uφ,t (0, x0)

hence µt is identified (then one has to work more to prove uniqueness of
the law on path space).
[In fact properties of ∇uφ,t enter also in making rigorous the application of
Itô formula; this is a diffi cult technical issue.]
This strategy has been developed even to the extreme case when b is a
distribution of suitable class. We do not insist too much on this approach
however, in finite dimensions, since for most classes of b one can prove
also pathwise uniqueness.
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The second half of the principle, namely pathwise uniqueness under more
informations on Kolmogorov equation, will be now explained in the
following particular case:

b ∈ C
(
[0,T ] ;C α

b

(
Rd ,Rd

))
.

The relevant information is that, under this assumption, the vector-valued
non-homogeneous Kolmogorov equation

∂tu (t, x) +
σ2

2
∆u (t, x) + b (t, x) · ∇u (t, x) = −b (t, x) + λu (t, x)

u (T , x) = 0

for λ ≥ 0 has a unique solution of class C 1,2, with bounded first and
second derivatives, with the additional information (λ > 0)

‖∇u‖∞ ≤
C√

λ
.
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We thus have

du (t,Xt ) =

(
∂tu (t,Xt ) +

σ2

2
∆u (t,Xt ) + b (t,Xt ) · ∇u (t,Xt )

)
dt

+σ∇u (t,Xt ) · dWt

= (−b (t,Xt ) + λu (t,Xt )) dt + σ∇u (t,Xt ) · dWt

namely∫ t

0
b (s,Xs ) ds = u (0,X0)− u (t,Xt )

+λ
∫ t

0
u (s,Xs ) ds +

∫ t

0
σ∇u (s,Xs ) · dWs .
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Therefore the integral equation for Xt

Xt = x0 +
∫ t

0
b (s,Xs ) ds + σWt

can be rewritten as

Xt = x0 + u (0, x0)− u (t,Xt ) + λ
∫ t

0
u (s,Xs ) ds

+
∫ t

0
σ (∇u (s,Xs ) + I ) · dWs .

The advantage is that instead of the non-Lipschitz function b we have now
the Lipschits functions u and ∇u.
The integral terms will be dealt with by Gronwall lemma. The non-integral
term u (t,Xt ) requires the condition

‖∇u‖∞ ≤
C√

λ

in order to be contractive.
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Assume X (1)t ,X (2)t are two solutions and Yt = X
(1)
t − X

(2)
t . Then

Yt = u
(
t,X (2)t

)
− u

(
t,X (1)t

)
+ λ

∫ t

0

(
u
(
s,X (1)s

)
− u

(
s,X (2)s

))
ds

+
∫ t

0
σ
(
∇u

(
s,X (1)s

)
−∇u

(
s,X (2)s

))
· dWs

E
[
|Yt |2

]
≤ C

λ
E
[
|Yt |2

]
+ C

(
λ+ σ2

∥∥D2u∥∥2∞) ∫ t

0
E
[
|Ys |2

]
ds

hence X (1) = X (2).
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Stochastic flows

The same proof, applied to two solutions X xt ,X
y
t starting from initial

conditions
X x0 = x , X y0 = y

provides the estimate

E
[
|X xt − X yt |

2
]
≤ C |(x + u (0, x))− (y + u (0, y))|2

+
C
λ

E
[
|X xt − X yt |

2
]
+ C

(
λ+ σ2

∥∥D2u∥∥2∞) ∫ t

0
E
[
|X xs − X ys |2

]
ds

which easily implies (for t ∈ [0,T ])

E
[
|X xt − X yt |

2
]
≤ C |x − y |2 .

Franco Flandoli, Scuola Normale Superiore () SPDEs II Bologna 2019 20 / 31



With moderate effort it can be improved to

E [|X xt − X ys |p ] ≤ Cp
(
|t − s |p/2 + |x − y |p

)
for every p ≥ 2 hence, by Kolmogorov regularity criterium, it provides the
existence of a continuous version

(t, x) 7→ X xt

which is also (β, 2β)-Hölder (locally) for every β < 1/2. This is the
stochastic flow associated to the SDE.
With some additional effort at the PDE level (u ∈ C

(
[0,T ] ;C 2,α

(
Rd
))
,

because b ∈ C
(
[0,T ] ;C α

b

(
Rd ,Rd

))
) and at the stochastic level, one can

prove that
x 7→ X xt

is in fact of class C 1,α
′

loc

(
Rd ,Rd

)
for every α′ < α.
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Regularization by noise

Thus we have seen that additive noise in a SDE with only α-Hölder drift b
"regularizes" the SDE in the following sense: pathwise uniqueness holds
and the dependence on initial conditions is pathwise smooth,
C 1,α

′

loc

(
Rd ,Rd

)
for every α′ < α.

There are extensions to L∞-drift and also to Lq
(
0,T ; Lp

(
Rd ,Rd

))
drift

for p, q ≥ 2 satisfying
d
p
+
2
q
< 1

and some result also for dp +
2
q = 1 (Ladysenskaya-Prodi-Serrin condition).

Many people contributed to these results: Zvonkin, Veretennikov, Krylov,
Röckner, Gubinelli, Priola, Fedrizzi, Maurelli, Beck, Proske, Mohammed,
Nilssen and others.
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Regularization by noise for transport equation

As a by-product, these results on stochastic flows imply well-posedness
results for stochastic transport and continuity equations.
Consider the transport equation

∂tu (t, x) + b (t, x) · ∇u (t, x) = 0, u (0, x) = u0 (x)

when
b ∈ C

(
[0,T ] ;C α

b

(
Rd ,Rd

))
.

There are examples of non-uniqueness and examples of loss of regularity
(blow-up).
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Di Perna - P.L. Lions theory tells us that existence and uniqueness of weak
L∞ solutions is true when

b ∈ W 1,1
loc , [div b]− bounded

plus growth conditions. But Hölder drift is too weak.

Theorem (F.-Gubinelli-Priola, Inv.Math. 2010)

If b ∈ C
(
[0,T ] ;C α

b

(
Rd ,Rd

))
, div b ∈ Lp , σ 6= 0, then the stochastic

transport equation

du + b · ∇udt + σ∇u ◦ dW = 0, u (0, x) = u0 (x)

is well posed in the class of weak L∞ solutions.
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The heuristic idea of proof using stochastic flows is elementary: by
Itô-Wentzel formula in Stratonovich form, if u is a solution of

du + b · ∇udt + σ∇u ◦ dW = 0, u (0, x) = u0 (x)

and
(t, x) 7→ X xt

is the stochastic flow, we get

u (t,X xt ) = u0 (x)

hence u (t,X xt ) is uniquely identified:

du (t,X xt )
Strat
= (du) (t,X xt ) +∇u (t,X xt ) ◦ dX xt

= − (b · ∇udt + σ∇u ◦ dW ) +∇u ◦ (bdt + σdW )

= 0
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The rigorous proof requires to apply rigorously Itô-Wentzel formula in
Stratonovich form, hence requires regularization of u. But the
regularization

uε (t, x) := (θε ∗ u (t)) (x)
satisfies (in weak form) an equation with a remainder

duε + b · ∇uεdt + σ∇uε ◦ dW = Rεdt, uε (0, x) = (θε ∗ u0) (x)

where Rε is the commutator

Rε = b · ∇uε − θε ∗ (b · ∇u) .

Thus a very careful commutator estimate is necessary to complete the
proof.
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Back to 2D Euler equations

Assume ω is a solution of the 2D Euler equation in vorticity form:

dω+ u · ∇ωdt + σ∇ω ◦ dW = 0, ω (0, x) = ω0 (x)

and X xt is a solution of

dX xt = u (t,X
x
t ) dt + σdWt .

If we may apply Itô-Wentzel formula in Stratonovich form, we get

dω (t,X xt )
Strat
= (dω) (t,X xt ) +∇ω (t,X xt ) ◦ dX xt

= − (u · ∇ωdt + σ∇ω ◦ dW ) +∇ω ◦ (udt + σdW )

= 0

so
ω (t,X xt ) = ω0 (x)

and again we identify uniquely ω (t,X xt ).
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Unfortunately the previous argument contains some deep false step.
Indeed:

1 the same argument works for σ = 0, where uniqueness is an open
problem

2 setting v (t, x) = u (t, x ± σWt ) one can pass from the stochastic to
the deterministic case and viceversa, hence any pathology of one case
exists also for the other one.

The second objection is removed by taking a space-dependent noise, see
below.
The first objection is more hidden: why the computation is false in the
deterministic case and where the noise could improve it? Some diffi culties
are:

solutions ω (t) of class L2 are not smooth enough to apply chain rules
and thus we need to regularize and control commutators.
the drift u is random in the equation

dX xt = u (t,X
x
t ) dt + σdWt

and only of class W 1,2. Making it rigorous remains open.
Franco Flandoli, Scuola Normale Superiore () SPDEs II Bologna 2019 28 / 31



Space-dependent noise

It means (as in the additive noise case) that we consider

Wt (x) =
∞

∑
n=1

σnβn (t) en (x)

and thus the SPDE is

dω+ u · ∇ωdt +
∞

∑
n=1

σnen · ∇ω ◦ dβn = 0

and the SDE is

dX xt = u (t,X
x
t ) dt +

∞

∑
n=1

σnen (X xt ) ◦ dβn (t) .
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It looks more diffi cult but it is more promising for "regularization by
noise". Indeed we have at least one positive result.
Consider measure-valued vorticities of the form (point vortices)

ω (t) =
N

∑
i=1
ai δX it

where (coherently with Euler equation)

dX it = ∑
j 6=i

aj
2π

(
X it − X jt

)⊥
∣∣∣X it − X jt ∣∣∣2 dt +

∞

∑
n=1

σnen
(
X it
)
◦ dβn (t) .

Without noise, there are (explicit) examples of initial conditions(
X 10 , ...,X

N
0

)
and intensities (a1, ..., aN ) such that collision of vortices

occurs in finite time (blow-up).
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Theorem (F.-Gubinelli-Priola, SPA 2015)

There exists (σn) such that for every
(
X 10 , ...,X

N
0

)
and (a1, ..., aN )

collision does not happen, with probability one.

With Delarue and Vincenzi we have proved an analogous result for another
nonlinear PDE, the so called Vlasov-Poisson equation, plus additional
results.

At the end, it is meaningful to ask ourselves whether such
space-dependent noises regularize also the Lp theory of Euler equation.
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