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Introduction

Except for isolated contributions (but relevant, like P.L. Chow,
Vishik-Fursikov, Bensoussan-Temam), I think it was an idea of J.L. Lions
and A. Bensoussan in the seventies to ask young very clever PhD students
to develop a coherent theory of SPDEs.

They identified two initial branches, equations covered by monotonicity
methods and those by the compactness methods.

E. Pardoux wrote his thesis on the monotonicity method, a masterpiece of
incredible completeness also from the viewpoint of stochastic integration
in infinite dimensions, just overcome later on by Krylov and Rozovski for a
little detail of generalization. Recently the subject has been revised by
Prevôt-Roeckner, B. Gess and others since the area of monotone operators
is wider than the one spanned by Pardoux.
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The compactness method was in the thesis of Viot, later considered again
by Metivier and many others.

It is a very flexible method and perhaps for this reason it escaped such a
complete solution as the one in Pardoux thesis.

I will review some elements of the compactness method below.
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Slightly later on, say in the eighties, Da Prato and Zabczyk and their
groups (and later on other groups) developed the semigroup approach.

It is also very flexible and in a sense the best one to extend finite
dimensional results; it has been very successful also for stochastic control
theory.

Other methods have been also developed, like Walsh one, and methods
based on infinite dimensional calculus like Hida calculus and similar. More
recently there are specific methods for other classes of PDEs, like fully
nonlinear (P.L. Lions and Souganidis), dispersive equations and
conservation laws (Debussche et al).
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Nowadays it is diffi cult to identify a PDE which was not already considered
with some kind of noise and for which a theorem of existence has not been
proved. For non-extreme SPDEs, open existence questions are not
common anymore.

But there are "extreme SPDEs", called often "singular SPDEs". They
arise in Mathematical Physics, precisely in Kardar-Parisi-Zhang theory of
random interfaces, in Quantum Field theory, and in other specific problems
(Anderson model, for instance).

They have very singular noise which apprently is not compatible with the
space-dimension and regularity theory of the PDE part. Hairer and
coworkers, and just a little later Gubinelli and coworkers, revolutioned this
sector.
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Plan of the lectures

The method of compactness

Kolmogorov equations

Open problems of regularization by noise

The first subject is introduced with the aim of teaching something classical
but always extremely useful.
The second subject is still relatively new, rich of open questions and
potential and related to advanced research activity in Bologna.
The third subject provides examples of quite advanced questions of current
research.
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Two open questions in fluid mechanics

Before we start with elements of the compactness method let us mention
two open problems.
The first one, in a sense the most important one in the field, is the well
posedness of the 3D Navier-Stokes equations:

∂tu + u · ∇u +∇p = ν∆u
div u = 0

with suitable boundary and initial conditions. Existence of global weak
solutions is known, but their uniqueness is open. Existence and uniqueness
of local regular solutions from regular initial conditions is known, but their
globality in time or conversely their blow-up is open.
A natural question is: can we find a noise such that the stochastic 3D
Navier-Stokes equations are well posed (either in the class of weak
solutions or the regular ones)?
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The second problem is the well posedness of Euler equations; here there
are questions at all levels (incompressible, compressible, d=2,3) so we
choose the simplest one to formulate.
For incompressible 2D fluids one can introduce the variable "vorticity",
ω = ∇⊥ · u and write the equations in the transport form

∂tω+ u · ∇ω = 0

(it is nonlinear, because u depends on ω). When ω (0) is bounded
measurable, it is known that there is one and only one L∞-solution.
But when ω (0) ∈ Lp , with p < ∞, only existence of global Lp-solutions is
known; uniqueness is open.
Can we find a noise such that the stochastic 2D Euler equations are well
posed in the class of Lp-vorticity?
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Method of compactness

Flexible and universal. Let us describe it in a particular case.

V
compact
⊂ H ⊂ Y

dense continuous injections. Aubin-Lions lemma:

L2 (0,T ;V ) ∩W 1,1 (0,T ;Y )
compact
⊂ L2 (0,T ;H) .

Several refinements, see J. Simon AMPA 1987, which also provide

compact
⊂ C ([0,T ] ;H)

under stronger assumptions (see below).

Franco Flandoli, Scuola Normale Superiore () SPDEs I Bologna 2019 9 / 42



If we have a sequence of functions (un) (usually solutions of an
approximate equation) such that∫ T

0
‖un (t)‖2V dt +

∫ T

0

∥∥∥∥dun (t)dt

∥∥∥∥
Y
dt ≤ C

then there exists a subsequence (unk ) and a function u ∈ L2 (0,T ;H) such
that

lim
n→∞

∫ T

0
‖un (t)− u (t)‖2H dt = 0.

Moreover, u ∈ L2 (0,T ;V ) and (unk ) can be chosen so that it converges
weakly to u in L2 (0,T ;V ). Using these facts, if un was a solution of an
approximating equation, often one can show that u is a solution of the
limit equation.
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Example

Assume A : V → V ′ linear bounded, such that there is ν > 0 with

〈Av , v〉V ′,V ≥ ν ‖v‖2V

for every v ∈ V ; B : V × V → V ′, bilinear continuous, such that

〈B (v , v) , v〉V ′,V = 0

for every v ∈ V . Consider the equation:

du
dt
+ Au + B (u, u) = 0, u|t=0 = u0

as an identity in V ′, or in the weak sense, for every φ ∈ V ,
〈u (t) , φ〉H +

∫ t
0 〈Au (s) , φ〉V ′,V ds

+
∫ t
0 〈B (u (s) , u (s)) , φ〉V ′,V ds = 〈u0, φ〉H .
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Assume H separable, {en} a c.o.s. of H with en ∈ V ,
πnx = ∑n

i=1 〈x , en〉H en, Hn = πn (H), un ∈ C 1 ([0,T ] ;Hn) unique
solution of

dun
dt
+ πnAun + πnB (un, un) = 0, un |t=0 = πnu0

It is easy to prove

sup
t∈[0,T ]

‖un (t)‖2H +
∫ T

0
‖un (t)‖2V dt ≤ C

∫ T

0

∥∥∥∥dun (t)dt

∥∥∥∥
V ′
dt ≤ C

hence Aubin-Lions lemma applies (Y = V ′) and we get (unk ) strongly
convergent to some u in L2 (0,T ;H), and weakly in L2 (0,T ;V ) (and
weak-star in L∞ (0,T ;H)).
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In the identity

〈un (t) , φ〉H +
∫ t

0
〈πnAun+, φ〉V ′,V ds +

∫ t

0
〈πnB (un, un) , φ〉V ′,V ds

= 〈πnu0, φ〉H

one can pass to the limit, with some additional argument, in all terms
except for ∫ t

0
〈πnB (un (s) , un (s)) , φ〉V ′,V ds.

It is here, in examples, that we take advantage of the strong convergence
in L2 (0,T ;H). At the abstract level, let us assume that: if vn → v
strongly in H and weakly in V , then

〈B (vn, vn) , φ〉V ′,V → 〈B (v , v) , φ〉V ′,V

for all φ in a dense set of V . Then one can pass to the limit also in the
quadratic term.
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Navier-Stokes example

Let me describe the case of the 2D Navier-Stokes equation on the torus
T2 = R2/Z2, for simplicity (all what I say can be extended to bounded
domains with Dirichlet boundary conditions and to the 3D case, but with
some care):

∂tu + u · ∇u +∇p = ν∆u
div u = 0

(u=velocity, p=pressure), D = space of C∞ vector fields v : T2 → R2,
periodic, mean zero, div v = 0,

H = closure of D in the L2-topology
V = closure of D in the W 1,2-topology

Av = ν∆v

〈B (u, v) , z〉V ′,V =
∫

T2
(u (x) · ∇v (x)) · z (x) dx
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All properties are satisfied; let us only discuss: if vn → v strongly in H and
weakly in V , then

〈B (vn, vn) , φ〉V ′,V → 〈B (v , v) , φ〉V ′,V

for all φ in a dense set of V .
We have

〈B (vn, vn) , φ〉V ′,V =
∫

T2
(vn (x) · ∇vn (x)) · φ (x) dx

= −
∫

T2
(vn (x) · ∇φ (x)) · vn (x) dx

hence it is trivial, for φ ∈ C 1
(
T2,R2

)
.
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Theorem
For the 2D Navier-Stokes equation on T2, for every u0 ∈ H there exists
one and only one solution of class

C ([0,T ] ;H) ∩ L2 (0,T ;V ) .

Existence in L∞ (0,T ;H) ∩ L2 (0,T ;V ) has been shown; an additional
argument (here omitted) is needed for C ([0,T ] ;H). Uniqueness, up to
rigorous details, is due to the following estimates: if u1, u2 are two
solutions, v = u1 − u2 satisfies

dv
dt
+ Av + B (u1, v) + B (v , u2) = 0, v |t=0 = 0.
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From dv
dt + Av + B (u1, v) + B (v , u2) = 0 we get

1
2
d
dt
‖v‖2H + 〈Av , v〉V ′,V + 〈B (u1, v) , v〉V ′,V + 〈B (v , u2) , v〉V ′,V = 0

1
2
d
dt
‖v‖2H + ν ‖v‖2V ≤

∣∣〈B (v , u2) , v〉V ′,V ∣∣
∣∣∣∣∫

T2
(v (x) · ∇u2 (x)) · v (x) dx

∣∣∣∣ ≤ C ‖u2‖V
(∫

T2
|v (x)|4 dx

)1/2

≤ C ‖u2‖V ‖v‖H ‖v‖V

‖v (t)‖2H ≤
∫ t

0
‖u2 (s)‖2V ‖v (s)‖

2
H ds

hence ‖v (t)‖2H = 0 because
∫ t
0 ‖u2 (s)‖

2
V ds < ∞.
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Fractional Sobolev spaces

Essential for the stochastic case is the generalization (see J. Simon 1987,
Corollary 5):

Lr (0,T ;V ) ∩W α,p (0,T ;Y )
compact
⊂ Lr (0,T ;H)

if αp > 1− p
r

(p, r ≥ 1)

Here α ∈ (0, 1) and W α,p (0,T ;Y ) is the space of functions
f ∈ Lp (0,T ;Y ) such that∫ T

0

∫ T

0

‖f (t)− f (s)‖pY
|t − s |1+αp dsdt < ∞.

Recall also that W α,p (0,T ;Y ) ⊂ C ([0,T ] ;Y ) if αp > 1.
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Stochastic case

Let (µn) be a family of probability measures on Borel sets of
L2 (0,T ;V ) ∩W α,p (0,T ;Y ) with the following property: for every ε > 0
there is a bounded set B ⊂ L2 (0,T ;V ) ∩W α,p (0,T ;Y ) such that

µn (B) ≥ 1− ε

for every n. Then (µn) is tight in L
2 (0,T ;H) because B is relatively

compact in L2 (0,T ;H). Hence (Prohorov Thm) there exists a

subsequence
(

µnk

)
and a probability measure µ on Borel sets of

L2 (0,T ;H) such that∫
L2(0,T ;H )

Φdµnk →
∫
L2(0,T ;H )

Φdµ

for every Φ : L2 (0,T ;H)→ R continuous bounded.
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Typical case: µn is the law, on L
2 (0,T ;V ) ∩W α,p (0,T ;Y ) of a

stochastic process un (t):
µn = L (un) .

This is why we have generalized to α ∈ (0, 1): usual stochastic processes
(like Brownian motion) do not have paths of class W 1,p (0,T ;Y ) but only
W α,p (0,T ;Y ) for relatively small α (α ∈

(
0, 12
)
for Brownian motion).

Typical bounded sets in L2 (0,T ;V ) ∩W α,p (0,T ;Y ): the set of all f
such that ∫ T

0
‖f (t)‖2V dt +

∫ T

0

∫ T

0

‖f (t)− f (s)‖pY
|t − s |1+αp dsdt ≤ C .

Typical way to prove µn (B) ≥ 1− ε:

E

∫ T

0
‖un (t)‖2V dt +E

∫ T

0

∫ T

0

‖un (t)− un (s)‖pY
|t − s |1+αp dsdt ≤ C

(by Chebyshev inequality).
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Example

As above we have A : V → V ′, B : V × V → V ′ and now the equation:
du
dt
+ Au + B (u, u) = ξ, u|t=0 = u0

where ξ is white noise in time, with some covariance in space. Let us first
define ξ.
Given a c.o.s. {en} of H, given a probability space (Ω,F ,P), given a
sequence of independent Brownian motions {βn} and nonnegative
numbers {σn}, we introduce the formal series

Wt =
∞

∑
n=1

σnβn (t) en.

If ∑∞
n=1 σ2n < ∞, it converges in L2 (Ω;H) for every t ≥ 0:

E
[
‖Wt‖2H

]
=

∞

∑
n=1

σ2nE
[
|βn (t)|

2
]
=

∞

∑
n=1

σ2n < ∞.

It defines an H-valued Brownian motion (Wt )t≥0. We formally take
ξ = dWt/dt.
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When ∑∞
n=1 σ2n = +∞, but σ2n ≤ C , we may still define Wt as an element

of L2 (Ω;Y ) for some space Y ⊃ H. We omit the details. The meaning of
equation

du
dt
+ Au + B (u, u) = ξ, u|t=0 = u0

is (recall that formally ξ = ∑∞
n=1 σnβ′nen)

〈u (t) , φ〉H −〈u0, φ〉H +
∫ t

0
〈Au + B (u, u) , φ〉V ′,V ds =

∞

∑
n=1

σnβn (t) 〈en, φ〉H

and it is suffi cient that, given φ in a dense set of V ,
∑∞
n=1 σnβn (t) 〈en, φ〉H converges in L2 (Ω;R), which is true if σ2n ≤ C :

E

( ∞

∑
n=1

σnβn (t) 〈en, φ〉H

)2 = ∞

∑
n=1

σ2n 〈en, φ〉2H ≤ C ‖φ‖
2
H .
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For simplicity let us study only the case ∑∞
n=1 σ2n < ∞. Similarly to the

deterministic case one considers finite dimensional approximations. Assume
H separable, {en} a c.o.s. of H with en ∈ V , πnx = ∑n

i=1 〈x , en〉H en,
Hn = πn (H), un ∈ C 1 ([0,T ] ;Hn) unique solution of

dun + πn (Aun + B (un, un)) dt =
n

∑
k=1

σkdβk (t) en

with un |t=0 = πnu0, which has a unique continuous adapted solution. By
Itô formula

1
2
d ‖un‖2H + ν ‖un‖2V =

n

∑
k=1

σk 〈un, ek 〉H dβk (t) +
1
2

n

∑
k=1

σ2kdt

which easily implies

E

[
sup

t∈[0,T ]
‖un (t)‖2H +

∫ T

0
‖un (t)‖2V dt

]
≤ C .
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Recall above that we would like to have also (for αp > 1− p
2 and for a

suitable space Y ⊃ H)∫ T

0

∫ T

0

E [‖un (t)− un (s)‖pY ]
|t − s |1+αp dsdt ≤ C .

But (t ≥ s ≥ 0)

un (t)− un (s) = −
∫ t

s
πn (Aun + B (un, un)) dr

+
n

∑
k=1

σk (βk (t)− βk (s)) en.
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Choose for instance p = 2, Y ⊃ V ′,

‖un (t)− un (s)‖2Y

≤ (t − s)
∫ T

0
‖πnAun + πnB (un, un)‖2Y dr + C

n

∑
k=1

σ2k (βk (t)− βk (s))
2

E
[
‖un (t)− un (s)‖2Y

]
≤ C (t − s)

(∫ T

0
E
[
‖un‖2V + ‖B (un, un)‖

2
Y

]
dr +

n

∑
k=1

σ2k

)
.
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Comparing the requirement (for αp > 1− p
2 and for a suitable space

Y ⊃ H) ∫ T

0

∫ T

0

E [‖un (t)− un (s)‖pY ]
|t − s |1+αp dsdt ≤ C

with the choice p = 2, Y ⊃ V ′ and the bound

E
[
‖un (t)− un (s)‖2Y

]
≤ C (t − s)

(∫ T

0
E
[
‖un‖2V ′ + ‖B (un, un)‖

2
Y

]
dr +

n

∑
k=1

σ2k

)
we see we only need ∫ T

0
E
[
‖B (un, un)‖2Y

]
dr ≤ C

and then we can choose any α ∈
(
0, 12
)
.
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The proof of this bound requires additional structure of B, satisfied for
instance in the Navier-Stokes case, namely that there exists a space
Y ⊃ V ′ such that

‖B (v , v)‖2Y ≤ C ‖v‖
4
H .

This property is satisfied by the operator

〈B (u, v) , z〉V ′,V =
∫

T2
(u (x) · ∇v (x)) · z (x) dx

by taking Y = C 1
(
T2,R2

)′:
‖B (v , v)‖Y = sup

‖φ‖C 1≤1
|〈B (v , v) , φ〉| =

sup
‖φ‖C 1≤1

∣∣∣∣∫
T2
(v (x) · ∇φ (x)) · v (x) dx

∣∣∣∣ ≤ C ‖v‖2H .
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The additional property

‖B (v , v)‖2Y ≤ C ‖v‖
4
H

implies that, in order to fulfill∫ T

0
E
[
‖B (un, un)‖2Y

]
dr ≤ C

it is suffi cient to prove ∫ T

0
E
[
‖un‖4H

]
dr ≤ C .

Above, we only proved E
[
supt∈[0,T ] ‖un (t)‖2H

]
≤ C . In order to reach

power 4 it is suffi cient to repeat the computations using Doob’s inequality.
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Finally we have proved

E

∫ T

0
‖un (t)‖2V dt +E

∫ T

0

∫ T

0

‖un (t)− un (s)‖2Y
|t − s |1+α2 dsdt ≤ C

for a suitable space Y and for any α ∈
(
0, 12
)
. By the previous

compactness properties this implies that the family of laws

µn = L (un)

is tight in L2 (0,T ;H).

By Prohorov theorem, there exists a subsequence
(

µnn

)
which converges

weakly to some probability measure µ on L2 (0,T ;H). It remains to
identify µ as the law of of a process u which solves the stochastic
Navier-Stokes equation. This last part of the procedure is quite technical,
based on Skorohod theorem and martingale theory and is thus omitted
here for reasons of time; one can find it in many papers and books (like
Da Prato - Zabczyk).
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Theorem
For the stochastic 2D Navier-Stokes equation on T2, with additive noise
and ∑∞

n=1 σ2n < ∞, for every u0 ∈ H there exists one and only one
H-continuous adapted solution with the property

E

[
sup

t∈[0,T ]
‖u (t)‖2H +

∫ T

0
‖u (t)‖2V dt

]
≤ C .

The uniqueness statement is easy: if u1, u2 are two solutions, v = u1 − u2
satisfies the deterministic equation

dv
dt
+ Av + B (u1, v) + B (v , u2) = 0, v |t=0 = 0

hence, exactly with the same computations of the deterministic case we get

‖v (t)‖2H ≤
∫ t

0
‖u2 (s)‖2V ‖v (s)‖

2
H ds

and thus v (t) = 0, because
∫ t
0 ‖u2 (s)‖

2
V ds < ∞ with probability one.
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Having pathwise uniqueness, one can implement a method of Gyongy and
Krylov, PTRF 1996, to prove also existence on the original probability
space.
Indeed, what was not remarked above is that the method of compactness,
due to the last step of Skorohod theorem, provides existence of a solution
on a new probability space, a priori; the so called weak or martingale
solutions, which are not necessarily adapted to the corresponding
Brownian motion.
This diffi cuty disappears by the method of Gyongy and Krylov, when
pathwise uniqueness is known. Alternatively, the classical argument is
using Yamada-Watanabe theorem.
These diffi culties come from the fact that compactness of stochastic
processes is not a natural question from the viewpoint of the variable
ω ∈ Ω. Compactness of the laws is the surrogate, but then one has to
reconstruct a process.
Malliavin calculus may provide an alternative, proving compactness also in
ω ∈ Ω. There are results in this direction but rarely used. Maybe this
aspect could be improved.
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Singular noise

When ∑∞
n=1 σ2n = +∞ we are in the direction of the singular SPDEs

mentioned in the introduction.
Here, precisely in space dimension 2, one has to distinguish between the
case

σ2n = 1

called cylindrical noise, or space-time white noise, and intermediate cases
between this and ∑∞

n=1 σ2n < ∞.
Precisely, the operator −A has eigenvalues (λn), 0 < λ1 < λ2 < ...,
limn→∞ λn = +∞ and one can consider the case

σ2n = λ−α
n .

It turns out (d = 2) that for α ≤ 1 one has ∑∞
n=1 σ2n = +∞, while for

α > 1 one has ∑∞
n=1 σ2n < ∞.

The intermediate case is
0 < α ≤ 1.
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In this case one can use the following method: solve the linear equation
(Stokes equation)

dz
dt
+ Az + ξ, z |t=0 = 0

and consider the equation for

v = u − z

which is

dv
dt
+ Av + B (v + z , v + z) = 0, v |t=0 = u0. (1)
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This is a deterministic PDE depending on the random "function" z (t).
From the explicit formula

z (t) =
∞

∑
n=1

σn

∫ t

0
e−λn(t−s)dβn (s) en

and the assumption σ2n = λ−α
n , α > 0, one can prove that z is a true

function, with suffi cient regularity to study equation (1) by classical
methods.
When σ2n = 1, z (t) takes values in a space of distributions W

−ε,2. The
meaning of the quadratic term when applied to distributions has to be
clarified. Using Gaussian renormalization (Wick products) it has a meaning
and the final equation can be solved.
This was a breakthrough of Da Prato and Debussche, followed by
additional fundamental results of Albeverio and Ferrario. Some people say
it was the beginning of the theory of singular SPDEs, the germ of the idea
of regularity structures.
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Embedding into continuous functions

The property of continuity in time of paths sometimes follows a posteriori,
from the SPDE.
Alternatively, we may try to prove convergence of the approximating
scheme in the uniform topology. To this purpose we may use the following
result of J. Simon 1987, Corollary 9: assume in addition (θ ∈ (0, 1))

‖v‖H ≤ C ‖v‖1−θ
V ‖v‖θ

Y θ ∈ (0, 1)

αp > 1 and r >
1− θ

θ

p
αp − 1 (p, r ≥ 1).

Then
Lr (0,T ;V ) ∩W α,p (0,T ;Y )

compact
⊂ C ([0,T ] ;H) .
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In stochastic examples one has to prove

E

∫ T

0

∫ T

0

‖un (t)− un (s)‖pY
|t − s |1+αp dsdt ≤ C

for some αp > 1 and then

E

∫ T

0
‖un (t)‖rV dt ≤ C

for r arbitrarily large.
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The power of this technique should be compared with criteria based on
Ascoli-Arzelà. They require for instance

E

[
sup

0≤s<t≤T

‖un (t)− un (s)‖H
|t − s |ε

]
≤ C

but it is very diffi cult to estimate the supremum in two time parameters.
Aldous criterium based on stopping times and martingale theory is a great
advance in this direction. The previous method based on J. Simon
theorem is an alternative.
In Probability the case of càdlàg processes is very important. Skhorokod
space and topology and corresponding compactness criteria are well
developed for them. An open problem is whether one can build criteria
similar to those above, suitable for càdlàg processes.
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Convergence of particle systems

The method of compactness works well also to prove convergence of
particle systems to (S)PDEs.

In the purely mean field cases, it is not competitive with other approaches
like those described in the book of Sznitman, more quantitative, easier etc.

In variants of the mean field case the compactness method shows its
flexibility.

Franco Flandoli, Scuola Normale Superiore () SPDEs I Bologna 2019 38 / 42



The 3D case

With relatively minor modifications with respect to the 2D case, one can
also prove:

Theorem
For the stochastic 3D Navier-Stokes equation on T3, with additive noise
and ∑∞

n=1 σ2n < ∞, for every u0 ∈ H there exists at least one H-weakly
continuous adapted solution with the property

E

[
sup

t∈[0,T ]
‖u (t)‖2H +

∫ T

0
‖u (t)‖2V dt

]
≤ C .

The solution is understood in the so called weak probabilistic sense: there
exists a probability space (Ω,F ,P), a filtration (Ft ), an (Ft )-Brownian
motion and a solution adapted to (Ft ) (but not necessarily to the
Brownian motion). Otherwise, there exist a path-by-path solution, on the
original space, but we do not know whether it is adapted. Uniqueness
remains open, in spite of formidable efforts (more later).
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2D Euler equations

In the case

∂tω+ u · ∇ω = 0

we do not have the operator A, which provided the bounds in V . However,
considering u (t) ∈ H and ω (t) ∈ V , the a priori estimate in V comes
from the conservation of enstrophy:

1
2
d
dt

∫
T2

ω2dx =
∫

T2
ω (u · ∇ω) dx =

1
2

∫
T2
u · ∇

(
ω2) dx

= −1
2

∫
T2

div u ·ω2dx = 0

so the method of compactness applies again!
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It gives us:

Theorem
For the deterministic incompressible 2D Euler equations on T2, for every
ω (0) ∈ L2 there exists at least one L2-weakly continuous solution, with
the property supt∈[0,T ] ‖ω (t)‖2L2 < ∞.

Concerning stochastic perturbations, I do not find so natural (see below)
to use an additive noise. More natural is the transport type noise

∂tω+ u · ∇ω+ σ∇ω ◦W ′ = 0.

The multiplication denoted by ∇ω ◦W ′ is the Stratonovich one; we do
not start discussing it here but only remark that the rules of calculus, for
it, are the same of the rules of deterministic calculus (the price are more
diffi cult proofs of such rules and more restrictive conditions for their
validity).
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With this kind of noise we again have conservation of enstrophy:

1
2
d
∫

T2
ω2dx = σ

∫
T2

ω∇ωdx ◦ dW =
σ

2

∫
T2
∇
(
ω2) dx ◦ dW = 0.

With the same compactness arguments explained above one can prove:

Theorem
For the stochastic incompressible 2D Euler equations on T2, for every
ω (0) ∈ L2 there exists at least one L2-weakly continuous adapted
solution, with the property

E

[
sup

t∈[0,T ]
‖ω (t)‖2L2

]
≤ C .

Uniqueness remains open, even with more elaborate noises (more later).
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