
ARIMA models

1. De�nitions

1.1. AR models. An AR(p) (AutoRegressive of order p) model is a discrete time linear equations
with noise, of the form

Xt = �1Xt�1 + :::+ �pXt�p + "t:

Here p is the order, �1; :::; �p are the parameters or coe¢ cients (real numbers), "t is an error term,
usually a white noise with intensity �2. The model is considered either on integers t 2 Z, thus without
initial conditions, or on the non-negative integers t 2 N. In this case, the relation above starts from
t = p and some initial condition X0; :::; Xp�1 must be speci�ed.

Example 1. We have seen above the simplest case of an AR(1) model

Xt = �Xt�1 + "t:

With j�j < 1 and V ar [Xt] = �2

1��2 , it is a wide sense stationary process (in fact strict sense since it
is gaussian, see also below). The autocorrelation coe¢ cient decays exponentially:

� (n) = �n:

Even if the general formula is not so simple, one can prove a similar result for any AR model.

In order to model more general situations, it may be convenient to introduce models with non-zero
average, namely of the form

(Xt � �) = �1 (Xt�1 � �) + :::+ �p (Xt�p � �) + "t:

When � = 0, if we take an initial condition having zero average (this is needed if we want stationarity),
then E [Xt] = 0 for all t. We may escape this restriction by taking � 6= 0. The new process Zt = Xt��
has zero average and satis�es the usual equation

Zt = �1Zt�1 + :::+ �pZt�p + "t:

But Xt satis�es

Xt = �1Xt�1 + :::+ �pXt�p + "t + (�� �1�� :::� �p�)
= �1Xt�1 + :::+ �pXt�p + "t + e�:
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1.2. Time lag operator. Let S be the space of all sequences (xt)t2Z of real numbers. Let us
de�ne an operator L : S ! S, a map which transform sequences in sequences. It is de�ned as

Lxt = xt�1; for all t 2 Z:
We should write (Lx)t = xt�1, with the meaning that, given a sequence x = (xt)t2Z 2 S, we introduce
a new sequence Lx 2 S, that at time t is equal to the original sequence at time t � 1, hence the
notation (Lx)t = xt�1. For shortness, we drop the bracket and write Lxt = xt�1, but it is clear that
L operates on the full sequence x, not on the single value xt.

The map L is called time lag operator, or backward shift, because the result of L is a shift, a
translation, of the sequence, backwards (in the sense that we observe the same sequence but from one
position shifted on the left).

If we work on the space S+ of sequences (xt)t2N de�ned only for non-negative times, we cannot
de�ne this operator since, given (xt)t2N, its �rst value is x0, while the �rst value of Lx should be
x�1 which does not exist. Nevertheless, if we forget the �rst value, the operation of backward shift
is meaningful also here. Hence the notation Lxt = xt�1 is used also for sequences (xt)t2N, with the
understanding that one cannot take t = 0 in it.

Remark 1. The time lag operator is a linear operator.

The powers, positive and negative, of the lag operator are denoted by Lk:

Lkxt = xt�k; for t 2 Z
(or, for t � max (k; 0), for sequences (xt)t2N).

With this notation, the AR model reads 
1�

pX
k=1

�kL
k

!
Xt = "t:

1.3. MA models. A MA(q) (Moving Average with orders p and q) model is an explicit formula
for Xt in terms of noise of the form

Xt = "t + �1"t�1 + :::+ �q"t�q:

The process is given by a (weighted) average of the noise, but not an average from time zero to the
present time t; instead, an average moving with t is taken, using only the last q + 1 times.

Using time lags we can write

Xt =

 
1 +

qX
k=1

�kL
k

!
"t:

1.4. ARMA models. An ARMA(p; q) (AutoRegressive Moving Average with orders p and q)
model is a discrete time linear equations with noise, of the form 

1�
pX
k=1

�kL
k

!
Xt =

 
1 +

qX
k=1

�kL
k

!
"t
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or explicitly

Xt = �1Xt�1 + :::+ �pXt�p + "t + �1"t�1 + :::+ �q"t�q:

We may incorporate a non-zero average in this model. If we want that Xt has average �, the
natural procedure is to have a zero-average solution Zt of

Zt = �1Zt�1 + :::+ �pZt�p + "t + �1"t�1 + :::+ �q"t�q

and take Xt = Zt + �, hence solution of

Xt = �1Xt�1 + :::+ �pXt�p + "t + �1"t�1 + :::+ �q"t�q + e�
with e� = �� �1�� :::� �p�:

1.5. Di¤erence operator. Integration. The �rst di¤erence operator, �, is de�ned as

�Xt = Xt �Xt�1 = (1� L)Xt:

If we call

Yt = (1� L)Xt
then we may reconstruct Xt from Yt by integration:

Xt = Yt +Xt�1 = Yt + Yt�1 +Xt�2 = ::: = Yt + :::+ Y1 +X0

having the initial condition X0.
The second di¤erence operator, �2, is de�ned as

�2Xt = (1� L)2Xt:

Assume we have

Yt = (1� L)2Xt:
Then

Yt = (1� L)Zt
Zt = (1� L)Xt

so we may �rst reconstruct Zt from Yt:

Zt = Yt + :::+ Y2 + Z1

where

Z1 = (1� L)X1 = X1 �X0
(thus we need X1and X0); then we reconstruct Xt from Zt:

Xt = Zt + :::+ Z1 +X0:

All this can be generalized to �d, for any positive integer d.
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1.6. ARIMA models. An ARIMA(p; d; q) (AutoRegressive Integrated Moving Average with
orders p, d, q) model is a discrete time linear equations with noise, of the form 

1�
pX
k=1

�kL
k

!
(1� L)dXt =

 
1 +

qX
k=1

�kL
k

!
"t:

It is a particular case of ARMA models, but with a special structure. Set Yt := (1� L)dXt. Then Yt
is an ARMA(p; q) model  

1�
pX
k=1

�kL
k

!
Yt =

 
1 +

qX
k=1

�kL
k

!
"t

and Xt is obtained from Yt by d successive integrations. The number d is thus the order of integration.

Example 2. The random walk is ARIMA(0; 1; 0).

We may incorporate a non-zero average in the auxiliary process Yt and consider the equation 
1�

pX
k=1

�kL
k

!
(1� L)dXt =

 
1 +

qX
k=1

�kL
k

!
"t + e�

with e� = �� �1�� :::� �p�:
2. Stationarity, ARMA and ARIMA processes

Under suitable conditions on the parameters, there are stationary solutions to ARMA models,
called ARMA processes.

In the simplest case of AR(1) models, we have proved the stationarity (with suitable variance of
the initial condition) when the parameter � satis�es j�j < 1. In general, there are conditions but they
are quite technical and we address the interested reader to the specialized literature. In the sequel
we shall always use sentences of the form: �consider a stationary solution of the following ARMA
model�, meaning implicitly that it exists, namely that we are in the framework of such conditions.
Our statements will therefore hold only in such case, otherwise are just empty statements.

Integration brakes stationarity. Solutions to ARIMA models are always non-stationary if we take
Yt stationary (in this case the corresponding Xt is called ARIMA process). For instance, the random
walk is not stationary. The kind of growth of such processes is not always trivial. But if we include a
non-zero average, namely we consider the case 

1�
pX
k=1

�kL
k

!
(1� L)dXt =

 
1 +

qX
k=1

�kL
k

!
"t + e�

then we have the following: if d = 1, Xt has a linear trend ; if d = 2, a quadratic trend, and so on.
Indeed, at a very intuitive level, if Yt is a stationary solution of the associated ARMA model, with
mean �, then its integration produces a trend: a single step integration gives us

Xt = Yt + :::+ Y1 +X0
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so the stationary values of Y accumulate linearly; a two step integration produces a quadratic accumu-
lation, and so on. When � = 0, the sum Yt+ :::+Y1 has a lot of cancellations, so the trend is sublinear
(roughly it behaves as a square root). But the cancellations become statistically not signi�cant when
� 6= 0. If � > 0 and d = 1 we observe an average linear growth; if If � < 0 and d = 1 we observe
an average linear decay. This is also related to the ergodic theorem: since Yt is stationary and its
autocorrelation decays at in�nity, we may apply the ergodic theorem and have that

Yt + :::+ Y1
t

! E [Y1] = �

(in mean square). Hence
Yt + :::+ Y1 � � � t:

There are �uctuations, roughly of the order of a square root, around this linear trend.

3. Correlation function

3.1. First results. Assume we have a stationary, mean zero, ARMA(p; q) process. Set 
n :=
R (n) = E [XnX0].

Proposition 1. For every j > q,


j =

pX
k=1

�k
j�k:

Proof. Recall that R (�n) = R (n). Recall also that 
1�

pX
k=1

�kL
k

!
Xt =

 
1 +

qX
k=1

�kL
k

!
"t

Notice that for every n and m we have

E [Xt�nL
mXt] = E [Xt�nXt�m] = 
m�n:

Then


j �
pX
k=1

�k
j�k = E [XtXt�j ]�
pX
k=1

�kE [Xt�kXt�j ]

= E

"
Xt�j

 
Xt �

pX
k=1

�kXt�k

!#

= E

"
Xt�j

 
1 +

qX
k=1

�kL
k

!
"t

#
:

In the case j > q we have Lk"t independent of Xt�j , for k � q, hence


j �
pX
k=1

�k
j�k = 0:

The proof is complete. �
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This formula allows us to compute the full autocorrelation function when q = 0 (AR processes).

Example 3. Consider the simple case

Xt = aXt�1 + "t:

We get

j � �
j�1 = 0

for every j > 0, namely


1 = �
0


2 = �
1

:::

where 
0 = E
�
X2
0

�
. Hence


j = �
j
0:

On its own,
V ar [Xt] = a

2V ar [Xt�1] + V ar ["t]

hence

0 = a

2
0 + �
2

which gives us 
0 = �2

1�a2 . This is the same result found in Chapter 2.

Example 4. Consider the next case,

Xt = a1Xt�1 + a2Xt�2 + "t:

We get

j = �1
j�1 + �2
j�2

for every j > 0, namely


1 = �1
0 + �2
�1


2 = �1
1 + �2
0

:::

The �rst equation, in view of 
�1 = 
1, gives us


1 =
�1

1� �2

0:

Hence again we just need to �nd 
0. We have

V ar [Xt] = a1V ar [Xt�1] + a2V ar [Xt�2] + �
2 + 2Cov (Xt�1; Xt�2)

hence

0 = a1
0 + a2
0 + �

2 + 2
1:

This is a second relation between 
0 and 
1; together, they will gives us both quantities.
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3.2. ARMA as in�nite MA. Assume always that we have a stationary, mean zero, ARMA
process. Assume it is de�ned for all integers (in particular we use the noise for negative integers).
From  

1�
pX
k=1

�kL
k

!
Xt =

 
1 +

qX
k=1

�kL
k

!
"t

we get, when proper convergence conditions are satis�ed,

Xt =
1X
j=0

'jL
j"t

where
P1
j=0 'jx

j is the Taylor expansion of the function

g (x) =
1 +

Pq
k=1 �kx

k

1�
Pp
k=1 �kx

k
:

Indeed, assume this function g has the Taylor development g (x) =
P1
j=0 'jx

j in a neighborhood
U of the origin. Then, for each x 2 U , 

1�
pX
k=1

�kx
k

! 1X
j=0

'jx
j =

 
1 +

qX
k=1

�kx
k

!
:

Assume
1X
j=0

'2j <1:

One can prove that the series Xt :=
P1
j=0 'jL

j"t converges in mean square; and also
P1
j=0 'jL

j�k"t
for every k, and thus we have 

1�
pX
k=1

�kL
k

! 1X
j=0

'jL
j"t =

 
1 +

qX
k=1

�kL
k

!
"t:

Therefore Xt :=
P1
j=0 'jL

j"t solves the equation which de�nes the ARMA process. This is always
a solution; if we started with a given solution Xt, only under a uniqueness condition in law (that we
omit to discuss), we are sure that such solution can be represented in the form Xt =

P1
j=0 'jL

j"t.

Example 5. Consider the simple case

Xt = aXt�1 + "t:

We have

g (x) =
1

1� �x
hence

g (x) =
1X
j=0

(�x)j
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(recall the geometric series). The series converges for j�xj < 1. We need j�j < 1 to have
P1
j=0 '

2
j <1.

Therefore the ARMA process is

Xt =
1X
j=0

�jLj"t:

3.3. Correlation function, part 2. Assume always that we have a stationary, mean zero,
ARMA process and set 
n := R (n) = E [XnX0]. Under proper conditions,

Xt =
1X
i=0

'iL
i"t:

Hence we may compute E
�
Xt�j

�
1 +

Pq
k=1 �kL

k
�
"t
�
also for j � q, the case which was left aside

above, in the proof of Proposition 1.

Proposition 2. Under the previous assumptions, for all j = 0; :::; q we have


j �
pX
k=1

�k
j�k =

q�jX
i=0

'i�i+j�
2:

Thus, for every j � 0 we may write


j �
pX
k=1

�k
j�k =
1X
i=0

'i�i+j�
21i+j2f0;:::;qg:

Proof. We have (we set �0 = 1), from the proof of Proposition 1 and the identity Xt�j =P1
i=0 'iL

i"t�j ,


j �
pX
k=1

�k
j�k = E

"
Xt�j

qX
k=0

�kL
k"t

#

=
1X
i=0

qX
k=0

'i�kE
h
Li"t�jL

k"t

i
=

1X
i=0

qX
k=0

'i�k�i+j;k�
2

=
1X
i=0

'i�i+j�
21i+j2f0;:::;qg:

The proof is complete. �

This is a general formula. A more direct approach to compute E
�
Xt�j

�
1 +

Pq
k=1 �kL

k
�
"t
�
even

if j � q consists in the substitution of the equation for Xt�j :

E

"
Xt�j

 
1 +

qX
k=1

�kL
k

!
"t

#
= E

" 
pX
k=1

�kL
kXt�j +

 
1 +

qX
k=1

�kL
k

!
"t�j

! 
1 +

qX
k=1

�kL
k

!
"t

#
:
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The products involving Lk"t�j and Lk
0
"t are easily computed. Then we have products of the form

E
h
LkXt�jL

k0"t

i
the worse of which is

E
�
L1Xt�jL

q"t
�
:

If j � q, it is zero, otherwise not, but we may repeat the trick and go backward step by step. In simple
examples we may compute all 
j by this strategy.

Example 6. Consider the simple case

Xt = �Xt�1 + "t + �"t�1:

We get

j � �
j�1 = 0

for every j > 1, namely


2 = �
1


3 = �
2

:::

but from this relations we miss 
1 and 
0. About 
1, we have


1 � �
0 = E [Xt�1 (1 + �L) "t] = �E [Xt�1"t�1]
= �E [(�Xt�2 + "t�1 + �"t�2) "t�1] = ��

2:

Therefore 
1 is given in terms of 
0 (and then iteratively also 
2; 
3 and so on). On its own,

V ar [Xt] = a
2V ar [Xt�1] + �

2 + �2�2 + 2��Cov (Xt�1; "t�1)

hence

0 = a

2
0 + �
2 + �2�2 + 2��Cov (Xt�1; "t�1) :

Moreover,
Cov (Xt�1; "t�1) = Cov (�Xt�2 + "t�1 + �"t�2; "t�1) = �

2

hence

0 = a

2
0 + �
2 + �2�2 + 2���2:

This gives us 
0.

4. Power spectral density

We work under the assumptions of the previous sections, in particular that X is a stationary

ARMA process and g (x) = 1+
Pq
k=1 �kx

k

1�
Pp
k=1 �kx

k has the Taylor development g (x) =
P1
j=0 'jx

j in a complex

neighborhood U of the origin which includes the closed ball of radius 1. Moreover, we assume the
assumptions of Wiener-Khinchin theorem of Chapter 3.
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Theorem 1.

S (!) =
�2

2�

�����1 +
Pq
k=1 �ke

�ik!

1�
Pp
k=1 �ke

�ik!

�����
2

:

Proof. We have (ZT denotes the set of all n 2 Z such that jnj � T=2)

bXT (!) = 1p
2�

X
n2ZT

e�i!nXn =
1p
2�

X
n2ZT

1X
j=0

'je
�i!n"n�j

bX�
T (!) =

1p
2�

X
n02ZT

1X
j0=0

'j0e
i!n0"n0�j0

E
h bXT (!) bX�

T (!)
i
=
1

2�
E

24X
n2ZT

X
n02ZT

1X
j=0

1X
j0=0

'j'j0e
�i!nei!n

0
E
�
"n�j"n0�j0

�35

=
�2

2�

X
n2ZT

1X
j=0

1X
j0=0

'j'j0e
�i!nei!(n�j+j

0) = jZT j
�2

2�

1X
j=0

1X
j0=0

'je
�i!j'j0e

i!j0 = jZT j
�2

2�

�����
1X
n=0

'ne
�i!n

�����
2

:

The cardinality jZT j of ZT has the property limT!1 jZT j =T = 1, hence we get

S (!) =
�2

2�

�����
1X
n=0

'ne
�i!n

�����
2

:

Now, it is su¢ cient to use the the relation 1+
Pq
k=1 �kx

k

1�
Pp
k=1 �kx

k =
P1
j=0 'jx

j for x = e�i!. The proof is

complete.

Remark 2. Consider the case q = 0 and write the formula with ! = 2�f

S (f) =
�2

2�

1��1�Pp
k=1 �ke

�2�ikf
��2 :

Assume there is only k = p:

S (f) =
�2

2�

1

j1� �pe�2�ipf j2
:

The maxima are at pf 2 Z, namely for f = 1
p . The function S (f) immediately shows the periodicity

in the recursion

Xt = apXt�p + "t:

�
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4.1. Example.
Xt = 0:8 �Xt�12 + "t

S (f) =
�2

2�

���� 1

1� 0:8 � e�2�i�12�f

����2

0.0 0.1 0.2 0.3
0

1
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y


