
1

A note on impulse response for continuous, linear,
time-invariant, continuous-time systems

Maurizio Ciampa, Marco Franciosi and Mario Poletti

Abstract— In his paper “Causality and the impulse response
scandal” (IEEE Trans. Circuits Syst., vol. 50, 810–811, 2003),
Sandberg proved that, even if a continuous, linear, time-invariant,
continuous-time system admits an impulse response, such a
response doesnot always give a complete description of the
system. In this paper, a Theorem of Schwartz is used to define
an impulse response under almost general assumptions, and
to understand what we really know about two systems with
the same impulse response. These results are applied to a
survey of systems (significant by themselves and as leading
examples), showing that, apart from three classes of exceptions,
all of them are completely described by their impulse response.
Concerning the first two classes of exceptions, counterexamples
were given by Sandberg; concerning the remaining third class, a
counterexample is deduced here from the results of Sandberg.

Index Terms— Continuous-time signals, distributional signals,
continuous linear time-invariant systems, impulse response.

I. I NTRODUCTION

I N SIGNAL PROCESSING theory, a linear, time-invariant
(LTI), continuous-time system is a map

L : I → O

where:I (input space) andO (output space) are linear spaces
of signals defined onR, both closed under translation,1 and
L is a linear map which commutes with translation.2

In recent papers [1], [2], [3], Sandberg considered the
Banach spaceC of bounded uniformly-continuous complex-
valued functions defined onR, equipped with the usual sup–
norm

‖f‖ = sup
t∈R

|f(t)|

and the class of allcontinuous(with respect to the sup–norm)
LTI maps L : C → C admitting an impulse response, in
the sense that there exists a function∆ such that for every
sequencefk of progressively taller and narrower unit-area
functions of C , centered att = 0, the sequenceL (fk)
is pointwise convergent onR to ∆. In this class of maps,
Sandberg proved the existence of a non null map (in particular,
of a non nullcausalmap) with impulse response∆ = 0.

This unexpected result of Sandberg shows in particular that:
even if a continuous LTI mapL : I → O admits an
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1A spaceX is closed under translation when for everyf(t) ∈ X and
τ ∈ R, alsof(t− τ) ∈ X .

2That is: for everyf ∈ I and τ ∈ R, definedy(t) = L (f(t)) it is
L (f(t− τ)) = y(t− τ).

impulse response, such a response doesnot always give a
complete description ofL , i.e., there may exist continuous
LTI maps G : I → O different from L with the same
impulse response.

In this paper we considercontinuousLTI maps and face the
two problems arising from the results of Sandberg, namely:
how to define an impulse response for a continuous LTI map
L : I → O and what we really know about two continuous
LTI mapsL ,G : I → O with the same impulse response.

In order to exclude spaces of too generic functions (e.g.
the Banach space of all bounded, measurable or not, complex
valued functions defined onR) but to allow handling more
general signals (e.g. the derivatives, of any order, of bounded
measurable complex valued functions defined onR), and to
guarantee that the mildest available signals are allowed inputs,
we assume:

Assumption 1:I and O are subspaces of the setD ′ of
complex valued distributions onR, both equipped with a
notion of convergence and limit (denotedI -lim and O-lim
respectively) for sequences, such that if a sequencefk is
convergent inI (respectively: inO) with limit f, then fk

is also convergent inD ′ with the same limitf ;
Assumption 2:The spaceD of complex valuedC∞ func-

tions defined onR with compact support, is a subspace ofI ,
and the notion of convergence inI is such that if a sequence
fk is convergent inD with limit f, thenfk is also convergent
in I with the same limitf.

Concerning the meaning of continuity, we assume the
following

Definition 1: A map L is said to becontinuousif it is
sequentially continuous, i.e., if for everyf ∈ I and every
sequencefk ∈ I such thatf = I - lim

k→∞
fk, it is L (f) =

O- lim
k→∞

L (fk).
The preliminary problem of defining an impulse response

for every continuous LTI mapL : I → O (obviously under
Assumptions 1 and 2) is treated in Section II. A Theorem
of Schwartz allows us to solve this problem in a way that
agrees with the usual impulse response for everyL : C → C
admitting one, and withL (δ) whenever the Dirac impulseδ
is a member ofI and, as usual, there is a sequenceϕk ∈
D convergent, both in the spaceE ′ of the distributions with
compact support and inI , to δ.

The crucial problem of understanding what we really know
about two continuous LTI mapsL ,G : I → O, with
the same impulse response, is treated in Section III. By
(transfinite) induction we construct the widest setΣ (D ,I )
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of members ofI related toD through limits of sequences,
and we prove thatL (f) = G (f) for at least allf ∈ Σ (D ,I ).

As a consequence of this result, wheneverΣ (D ,I ) = I ,
any continuous LTI mapL : I → O is completely described
by its impulse response. This result agrees with a recent result
of Sandberg concerning a wide and significant class of LTI
mapsL : L∞ → L∞ continuous with respect to suitable
notions of convergence and limit (see Theorem 1 of [4]).

To better understand the extent of the above result and
to give methods to determineΣ (D ,I ) , in Section IV we
analyze some (in our opinion particularly significant by them-
selves and as leading examples) spacesI of functions or
distributions, showing in each case whether it isΣ (D ,I ) =
I or not.

To be more precise, we prove that the following input spaces
I :

• Lp with 1 6 p <∞
• D ′

Lp (weak convergence) with1 6 p 6 ∞
• D ′

Lp (strong convergence) with1 6 p <∞
• E ′, S ′, D ′

(whereD ′
Lp is the natural extension ofLp into D ′ andS ′ is

the space of tempered distributions) all verifyΣ (D ,I ) = I ,
so proving that for suchI every continuous LTI mapL :
I → O is completely described by its impulse response.

On the other hand, we prove that the following input spaces
I :

C , L∞, D ′
L∞ (strong convergence)

all verify Σ (D ,I ) 6= I . As a consequence, whenI is one
of these last spaces, there may exist different continuous LTI
mapsL ,G : I → O with the same impulse response.

ConcerningC , the result of Sandberg proves that there
really exist different causal continuous LTI mapsL ,G :
C → C with the same impulse response. ConcerningL∞

an analogous result has been proved by Sandberg in [4]. In
Section V, as corollaries of the result of Sandberg onC , we
give a new proof that there exist different causal continuous
LTI mapsL ,G : L∞ → L∞ with the same impulse response,
and we prove that, wheneverD ′

L∞ is considered with the
strong convergence, there exist different causal continuous LTI
mapsL ,G : D ′

L∞ → D ′
L∞ with the same impulse response.

II. I MPULSE RESPONSE

In this section we recall some basic notions on distributions
then, applying a theorem of Schwartz, we give a definition
of distributional impulse response and we show its first re-
lation with convolution. Finally we analyze the relation of
this impulse response with the one adopted by Sandberg for
continuous LTI mapsL : C → C and with the response to
the Dirac impulse.

Let D be the linear space ofC∞ complex-valued functions
defined onR with compact support. Letϕk be a sequence of
members ofD , and letϕ ∈ D ; if there is a compact subsetK
of R such thatsupp ϕk ⊆ K for everyk, and moreover for
everyh ∈ N the sequenceDhϕk converges toDhϕ uniformly
on R, then we writeD- lim

k→∞
ϕk = ϕ.

Let D ′ be the linear space of distributions onR, i.e., the
space of the linear and continuous functionals fromD into C.

As usual, for everyf ∈ D ′ and everyϕ ∈ D , the complex
numberf(ϕ) is denoted by〈f, ϕ〉, and, wheneverf is a locally
integrable function, it is

〈f, ϕ〉 =
∫ +∞

−∞
f(t)ϕ(t)dt

Let fk be a sequence of members ofD ′, and letf ∈ D ′; if
for everyϕ ∈ D it is

lim
k→∞

〈fk, ϕ〉 = 〈f, ϕ〉

then we writeD ′- lim
k→∞

fk = f .

In this Section we need also the spaceE ′ of distributions
with compact support. It is well known thatE ′ can be
introduced via a duality pairing as a space of functionals as
follows (see Theorem XXV of Chapter 3 of [5]).

Let E be the linear space ofC∞ complex-valued functions
defined onR. Let ϕk be a sequence of members ofE , and let
ϕ ∈ E ; if for every h ∈ N the sequenceDhϕk converges to
Dhϕ uniformly on every compact subset ofR, then we write
E - lim

k→∞
ϕk = ϕ.

E ′ is the set of the linear and continuous functionals from
E into C. As usual, for everyf ∈ E ′ and everyϕ ∈ E , the
complex numberf(ϕ) is denoted by〈f, ϕ〉, and, wheneverf
is an integrable function with compact support, it is

〈f, ϕ〉 =
∫ +∞

−∞
f(t)ϕ(t)dt

Let fk be a sequence of members ofE ′, and letf ∈ E ′; if
for everyϕ ∈ E it is

lim
k→∞

〈fk, ϕ〉 = 〈f, ϕ〉

then we writeE ′- lim
k→∞

fk = f ; moreover it is well known

that this condition is verified if and only if there exists a
compact subsetK of R such thatsupp fk ⊆ K for every
k, andD ′- lim

k→∞
fk = f .

In order to handle linear changes of variables for distribu-
tions, we agree to denote an elementf ∈ D ′ by a function-like
symbol f(t), so that the name “t” of the current variable is
pointed out. In this way, for everyλ, a ∈ R such thatλ 6= 0,
we denote byf(λt+ a) = f(a+ λt) the distribution defined
by

〈f(λt+ a), ϕ(t)〉 = |λ|−1
〈
f(t), ϕ

(
λ−1(t− a)

)〉
for everyϕ ∈ D . In particular, forλ = 1, a = −τ , we obtain
f(t− τ) defined by

〈f(t− τ), ϕ(t)〉 = 〈f(t), ϕ (t+ τ)〉

and, forλ = −1, a = τ , we obtainf(τ − t) defined by

〈f(τ − t), ϕ(t)〉 = 〈f(t), ϕ (τ − t)〉

For everyf(t) ∈ D ′, ϕ(t) ∈ D , the convolutionf ∗ϕ is the
C∞ function defined, for everyt ∈ R, by

(f ∗ ϕ)(t) = 〈f(τ), ϕ(t− τ)〉 = 〈f(t− τ), ϕ(τ)〉
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(see Theorem XI of Chapter 6 of [5]). Observe that, whenever
f(t) is a locally integrable function, this definition agrees with
the usual definition

(f ∗ ϕ)(t) =
∫ +∞

−∞
f(τ)ϕ(t− τ)dτ =

∫ +∞

−∞
f(t− τ)ϕ(τ)dτ

Concerning continuous LTI maps, the remark following
Theorem XXIII of Chapter 6 of [5] can be rewritten as:

Theorem 2.1 (Schwartz):Let L : D → D ′ be a continuous
LTI map. Then the following statements hold:

a) for every sequenceϕk ∈ D with E ′- lim
k→∞

ϕk = δ,

the sequenceL (ϕk) is convergent inD ′, and ∆ =
D ′- lim

k→∞
L (ϕk) is independent of the particular sequence

ϕk;
b) for everyϕ ∈ D it is L (ϕ) = ∆ ∗ ϕ.
This theorem allows us to define an impulse response for

every continuous LTI map (obviously under Assumptions 1
and 2).Indeed: let

L : I → O

be a continuous LTI map.Then the map

L̃ : D → D ′

defined byL̃ (ϕ) = L (ϕ) for everyϕ ∈ D , is a continuous
LTI map. By Theorem 2.1 applied tõL we obtain that:

a) there exists a unique∆ ∈ D ′ such that, for every
sequenceϕk ∈ D with E ′- lim

k→∞
ϕk = δ, it is ∆ =

D ′- lim
k→∞

L (ϕk)

and that

b) for everyϕ ∈ D it is L (ϕ) = ∆ ∗ ϕ
The distribution∆ will be called theimpulse responseof L .

The following theorems relate the above defined impulse
response to the one adopted by Sandberg for continuous LTI
mapsL : C → C and to the response to the Dirac impulse.

Let I = O = C . Since Assumptions 1 and 2 are verified,
every continuous LTI mapL : C → C has an impulse
response∆ ∈ D ′. As proven by the identity map, it may
be thatL does not have an impulse response in the usual
sense. The following theorem proves that, wheneverL has
an impulse response in the usual sense, here denoted by∆us,
then it is∆us = ∆.

Theorem 2.2:Let L : C → C be a continuous LTI map,
admitting an impulse response∆us in the usual sense, and let
fk ∈ C be a sequence such that for everyk it is:

fk(t) > 0 for every t ∈ R
supp fk ⊆ [−1/k, 1/k]∫ +∞

−∞
fk(t)dt = 1

The following statements hold:

a) the sequenceL (fk) converges to∆us uniformly on
every compact subset ofR;

b) ∆us is a continuous (not necessarily bounded and uni-
formly continuous) function;

c) ∆us = ∆.

Proof: For k = 1, 2, . . . , let Tk be the set of allf ∈ C
such that

f(t) > 0 for every t ∈ R
supp f ⊆ [−1/k, 1/k]∫ +∞

−∞
f(t)dt = 1

Obviously it isTk ⊇ Tk+1.
For everyk = 1, 2, . . . , and everyτ ∈ R, let Dk(τ) be the

diameter of
{ (L f) (τ) : f ∈ Tk} ⊆ C

Obviously it isDk(τ) > Dk+1(τ).
Observe that for everyτ ∈ R it is lim

k→∞
Dk(τ) =

0. Otherwise, there would exist ρ > 0 and pos-
itive integers k1 < k2 < · · · such that every
Dkj (τ) > 2ρ. Hence there would existf11, f12, . . . and
f21, f22, . . . such that, for everyj, it would be f1j , f2j ∈
Tkj , |(L f1j) (τ)− (L f2j) (τ)| > ρ. This is absurd, since it
is lim

j→∞
(L f1j) (τ) = ∆us(τ), lim

j→∞
(L f2j) (τ) = ∆us(τ).

As a consequence of the time invariance ofL , it is easily
proven that, for everyk = 1, 2, . . . , every η ∈ R such that
|η| < 1/k − 1/(k + 1) = 1/(k(k + 1)), and everyτ ∈ R, it
is { (L f) (τ) : f ∈ Tk+1} ⊆ { (L g) (τ + η) : g ∈ Tk} and
hence it isDk+1(τ) 6 Dk(τ + η).

Let 2dk = 1/(k(k+1)); the previous result proves that, for
everyk, and everyτ , it is

Dk+1(τ) 6 inf
t∈(τ−2dk,τ+2dk)

Dk(t)

as a consequence

sup
t∈(τ−dk,τ+dk)

Dk+1(t) 6 inf
t∈(τ−dk,τ+dk)

Dk(t)

Let K be a compact subset ofR, and letε > 0. For every
τ ∈ K, there existskτ such thatDkτ (τ) < ε; hence, for
every t ∈ (τ − dkτ , τ + dkτ ) it is Dkτ+1(t) < ε. An usual
trick, depending on the compactness ofK, proves that there
existskK such thatsupt∈K DkK

(t) < ε.
Let fk be as in the text of the theorem. LetK be a compact

subset ofR, and letε > 0. Since everyfk ∈ Tk, then for every
k1, k2 > kK and everyτ ∈ K it is

|(L fk2) (τ)− (L fk1) (τ)| 6 DkK
(τ) < ε

This result proves that the sequenceL (fk) is uniformly
convergent onK, and hence proves statements a) and b).

Concerning c), letfk be as above, but with the ulterior
condition that everyfk ∈ D ; observe thatE ′- lim

k→∞
fk = δ. By

the definition of impulse response, it is∆ = D ′- lim
k→∞

L (fk).
Since ∆us is continuous, it is∆us ∈ D ′. By a) it is also
∆us = D ′- lim

k→∞
L (fk). Hence∆ = ∆us.

Let the Dirac impulseδ be an allowed input (i.e.,δ ∈ I ),
let L : I → O be a continuous LTI map, and let∆ be its
impulse response. Then we may expect the impulse response
of the system being the response of the system to the Dirac
impulseδ, i.e., we may expect that∆ = L (δ).

The following unusual example proves that it may be∆ 6=
L (δ). Let K be the subspace ofD ′ spanned byL∞ and by
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the family δ(t − τ), with τ ∈ R, of the translated ofδ(t). It
is easily seen that everyg(t) ∈ K may be uniquely written,
apart from zero summands, in the form

g(t) = f(t) +
ν∑

h=1

chδ (t− τh)

with f(t) ∈ L∞, ν ∈ N, everych ∈ C and everyτh ∈ R. A
sequencegk(t) ∈ K will be called convergent inK if there
exist ν, τ1, . . . , τν such that every

gk(t) = fk(t) +
ν∑

h=1

ckhδ (t− τh)

with the sequencefk(t) convergent inL∞, and theν se-
quencesck1, . . . , ckν convergent inC; in that case theK -limit
of the sequencegk(t) is defined by

K - lim
k→∞

gk(t) = L∞- lim
k→∞

fk(t) +
ν∑

h=1

(
lim

k→∞
ckh

)
δ (t− τh)

Let d ∈ C, and letL : K → K be the continuous LTI
causal map defined by

L

(
f(t) +

ν∑
h=1

chδ (t− τh)

)
= f(t) +

ν∑
h=1

chdδ (t− τh)

It is easily seen that

a) the impulse response ofL is ∆ = δ,
b) the response ofL to δ is L (δ) = dδ;

so, choosingd = 1 it is L (δ) = δ = ∆ but, choosing for
instanced = 0 it is L (δ) = 0 6= ∆.

The following theorem gives a usually verified sufficient
condition onI in order that∆ = L (δ).

Theorem 2.3:Let L : I → O be a continuous LTI map,
and let ∆ be the impulse response ofL . If δ ∈ I , and
there exists a sequenceϕk ∈ D such thatE ′- lim

k→∞
ϕk = δ and

I - lim
k→∞

ϕk = δ, then it isL (δ) = ∆.

Proof: Let ϕk ∈ D be a sequence such that
E ′- lim

k→∞
ϕk = δ and I - lim

k→∞
ϕk = δ. By definition it is

∆ = D ′- lim
k→∞

L (ϕk). By assumption it isI - lim
k→∞

ϕk = δ;

hence by continuity it isO- lim
k→∞

L (ϕk) = L (δ). Since, by

Assumption 1,O- lim
k→∞

L (ϕk) = D ′- lim
k→∞

L (ϕk), then it is

L (δ) = ∆.

III. C ONTINUOUS LTI MAPS WITH THE SAME IMPULSE

RESPONSE. SEQUENTIAL CLOSURE

Let I be an input space. In this section we find a sufficient
condition onI in order that every continuous LTI mapL :
I → O is completely described by its impulse response.

To this aim, for every finite or transfinite ordinali, with
1 6 i, let Σi (D ,I ) be the subset ofI inductively defined
by

a) Σ1 (D ,I ) is the set of thef ∈ I such that there exists
a sequenceϕk ∈ D with f = I - lim

k→∞
ϕk

b) for 1 < i, Σi (D ,I ) is the set of thef ∈ I such that
there exists a sequence

fk ∈
⋃

1≤j<i

Σj (D ,I )

with f = I - lim
k→∞

fk

It is immediately seen that
i) every Σi (D ,I ) is a subspace ofI

ii) for every j < i it is Σj (D ,I ) ⊆ Σi (D ,I )
iii) if, for j < i it is Σj (D ,I ) = Σi (D ,I ), then, for every

h such thatj < h it is Σj (D ,I ) = Σh (D ,I )
As a consequence, since the cardinality of everyΣi (D ,I ) is
bounded by the cardinality ofI , there exists a unique finite
or transfinite ordinalω > 1 such that
iv) for every 1 6 j < i 6 ω, it is Σj (D ,I ) $ Σi (D ,I )
v) for everyω < h, it is Σω (D ,I ) = Σh (D ,I )

The spaceΣω (D ,I ) will be denoted byΣ (D ,I ) and will
be called thesequential closureof D in I .

The significance ofΣ (D ,I ) rests on the following two
results.

Theorem 3.1:Let L ,G : I → O be two continuous LTI
maps with the same impulse response∆. Then, for everyf ∈
Σ (D ,I ), it is L (f) = G (f).

Proof: By transfinite induction on1 6 i, we prove that
for everyf ∈ Σi (D ,I ) it is L (f) = G (f).

Let i = 1, and let f ∈ Σ1 (D ,I ). Since there exists
a sequenceϕk ∈ D such thatf = I - lim

k→∞
ϕk, then by

Theorem 2.1 it is

L (f) = O- lim
k→∞

L (ϕk) = O- lim
k→∞

∆ ∗ ϕk

G (f) = O- lim
k→∞

G (ϕk) = O- lim
k→∞

∆ ∗ ϕk

HenceL (f) = G (f).
Let 1 < i, and assume that the inductive statement holds for

every j < i. Let f ∈ Σi (D ,I ). By definition, there exists a
sequencef1, f2, . . . such that everyfk ∈ Σjk

(D ,I ), with a
suitablejk < i, and thatf = I - lim

k→∞
fk; then it is

L (f) = O- lim
k→∞

L (fk) , G (f) = O- lim
k→∞

G (fk)

Since fk ∈ Σjk
(D ,I ) and jk < i, by the inductive

assumption it isL (fk) = G (fk).
HenceL (f) = G (f).
Theorem 3.2:Let Σ (D ,I ) = I . Let L ,G : I → O be

two continuous LTI maps with the same impulse response∆.
Then it isL = G .

Proof: The statement is a straightforward consequence
of Theorem 3.1.

The above theorem proves that, wheneverΣ (D ,I ) = I ,
every continuous LTI mapL : I → O is completely
described by its impulse response.

This result agrees with a recent one obtained by Sandberg
(see Theorem 1 of [4]) concerning a wide and significant class
of continuous LTI mapsL : I → O, where:
• I is L∞ equipped with the following notion of conver-

gence and limit for sequences:f = I - lim
k→∞

fk if either

f ∈ L∞ ∩ L1, fk ∈ L∞ ∩ L1 and f = L1- lim
k→∞

fk, or
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f ∈ L∞ and fk = fwk, wherewk is the characteristic
function of the interval[−k, k];

• O is againL∞ but equipped with the following notion
of convergence and limit for sequences:f = O- lim

k→∞
fk

if f = L1
loc- lim

k→∞
fk.

Indeed we have:
a) I and O verify Assumptions 1 and 2, hence every

continuous LTI mapL : I → O admits an impulse
response∆ (in D ′);

b) whenever anL : I → O is in the class considered
by Sandberg and moreover admits an impulse response
h ∈ L1 in the sense specified in (a) of Theorem 1 of [4],
thenh = ∆;

c) since for allf ∈ I it is f = I - lim
k→∞

fwk and for all

fwk there exists a sequenceϕkj ∈ D such thatfwk =
I - lim

j→∞
ϕkj then it is

Σ(D ,I ) = Σ2(D ,I ) = I

hence every continuous LTI mapL : I → O is com-
pletely described by its impulse response; in particular,
given any sequenceϕk ∈ D with E ′- lim

k→∞
ϕk = δ, since

∆ = D ′- lim
k→∞

L (ϕk), then the behavior of the sequence

L (ϕk) uniquely determines the behavior ofL ;
d) whenever anL : I → O is in the class considered by

Sandberg, the representation ofL (f) for every f ∈ I
given in (8) of Theorem 1 of [4] agrees with the above
remark c) and makes apparent how the behavior ofL
on particular sequences converging toδ in E ′, uniquely
determines the behavior ofL on the whole input space
I .

IV. A SURVEY OF SEQUENTIAL CLOSURES AND

CONTINUOUSLTI MAPS COMPLETELY DESCRIBED BY

THEIR IMPULSE RESPONSE

In this section, in order to apply Theorem 3.2, we test the
condition Σ(D ,I ) = I where I is one of the following
spaces:C , Lp,E ′,S ′,D ′,D ′

Lp . In our opinion these spaces
are particularly significant both as spaces of signals and as
leading examples to determineΣ(D ,I ) for other possible
choices ofI .

ConcerningC , since it is a Banach space, we have

Σ(D ,C ) = Σ1(D ,C )

Obviously,Σ(D ,C ) ⊆ C0, whereC0 is the space of thef ∈ C
such that lim

|t|→∞
f(t) = 0; moreover, it is well known that every

f ∈ C0 is the limit, with respect to the sup norm, of a sequence
of members ofD . Hence it isΣ(D ,C ) = C0 and then

Σ(D ,C ) = C0 6= C

Concerning the spacesLp we distinguish between the case
1 6 p <∞ and the casep = ∞.

Let 1 6 p <∞, and letLp be the usual Banach space with
the norm defined by

‖f‖p =
(∫ +∞

−∞
|f(t)|pdt

)1/p

It is well known that everyf ∈ Lp is the limit of a sequence
of members ofD , which implies as a direct consequence that
Σ1(D , Lp) = Lp, hence

Σ(D , Lp) = Lp

Let p = ∞, and letL∞ be the usual Banach space with the
norm defined by

‖f‖∞ = essential sup
t∈R

|f(t)|

The argument adopted forC prove that

Σ(D , L∞) = Σ1(D , L∞) = C0 6= L∞

Concerning the spaces of distributionsD ′, E ′, S ′, by the
proof of Theorem 1.20, by Corollary 1.5 and by the proof of
Theorem 1.31 of [6] it isΣ2(D ,D ′) = D ′, Σ2(D ,E ′) = E ′

andΣ2(D ,S ′) = S ′; hence

Σ(D ,D ′) = D ′ , Σ(D ,E ′) = E ′ , Σ(D ,S ′) = S ′

Last, we consider theD ′
Lp spaces, which we are going to

illustrate.
For each1 6 p 6 ∞ the spaceD ′

Lp is the natural extension
of Lp in the spaceD ′ of distributions, namely the subspace of
D ′ spanned byLp itself and by the distributional derivatives
(of any order) of its elements. Despite their easy definition and
the obvious reasons of their introduction—e.g. anLp voltage
across a capacitor results in aD ′

Lp current—, in these spaces
plays a fundamental role a phenomenon which is not perceived
working with D ′, E ′, S ′.

As D ′,E ′ andS ′ (for this last, see Section 4 of Chapter 7 of
[5]), theD ′

Lp spaces can be introduced via a duality pairing, as
spaces of functionals, as follows (see Theorem XXV, Chapter 6
of [5]).

Let DLp be the space of allC∞ complex-valued functions
ϕ defined onR, such thatDhϕ ∈ Lp for any h ∈ N. Given
a sequenceϕk of members ofDLp , andϕ ∈ DLp we will
write DLp- lim

k→∞
ϕk = ϕ if for every h ∈ N, the sequence

Dhϕk converges toDhϕ in Lp. For p = ∞, ḊL∞ denotes
the subspace ofDL∞ , whose elements are theϕ such that
lim
|t|→∞

Dhϕ(t) = 0 for everyh ∈ N, equipped with a similar

notion of convergence anḋDL∞ - lim for sequences.
For 1 < p 6 ∞, D ′

Lp is the space of linear and continuous
functionalf from DLp′ into C, wherep′ is defined by1/p′+
1/p = 1. As usual, for everyf ∈ D ′

Lp , ϕ ∈ DLp′ , the complex
numberf(ϕ) is denoted by〈f, ϕ〉, and wheneverf ∈ Lp it is

〈f, ϕ〉 =
∫ +∞

−∞
f(t)ϕ(t)dt

For p = 1, D ′
L1 is the space of linear and continuous

functionals fromḊL∞ into C.
Working with spaces of distributions introduced via a dual-

ity pairing, two notions of convergence need to be considered:
a strong convergence and a weak one. As far as we are
concerned withD ′,E ′ andS ′ and only sequences are taken
into account, there is no distinction: a sequence is strongly
convergent if and only if it is weakly convergent (see Theo-
rem XIII of Chapter 3, Section 7 of Chapter 3 and Section 4
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of Chapter 7 of [5]). But this is no longer true forD ′
Lp spaces

(see Section 8 of Chapter 6 of [5]). Thus we first introduce
the notion of bounded set inDLp′ with 1 6 p′ < ∞ and in
ḊL∞ , and then we explainstrong and weakconvergence for
sequences inD ′

Lp .
Let 1 6 p′ <∞, and letB ⊆ DLp′ ; B is called a bounded

subset ofDLp′ if there exist positive real numbersM0,M1, . . .
such that, for everyh ∈ N, it is

sup
{
‖Dhϕ‖p′ : ϕ ∈ B

}
6 Mh

Bounded subsets oḟDL∞ have a similar definition.
Let 1 < p ≤ ∞. Let fk be a sequence of members ofD ′

Lp ,
and letf ∈ D ′

Lp . If, for every bounded subsetB of DLp′ , it
is

lim
k→∞

〈fk, ϕ〉 = 〈f, ϕ〉

uniformly with respect toϕ ∈ B, then we say that the
sequencefk strongly convergesto f , and we write

s-D ′
Lp- lim

k→∞
fk = f

If, for every ϕ ∈ DLp′ , it is

lim
k→∞

〈fk, ϕ〉 = 〈f, ϕ〉

then we say that the sequencefk weakly convergesto f , and
write

w-D ′
Lp- lim

k→∞
fk = f

Strong and weak convergence for sequences inD ′
L1 have

similar definitions by using bounded subsets inḊL∞ andϕ ∈
ḊL∞ .

The sequential closure ofD in D ′
Lp with respect to the

strong and the weak convergence will be denoted respectively
by

Σ (D , s-D ′
Lp) , Σ (D , w-D ′

Lp)

In order to analyze the above sets, we need some lemmas.
Lemma 4.1:Let 1 6 p 6 ∞. For everyf ∈ D ′

Lp there
exists a sequenceϕk ∈ DLp such thatf = s-D ′

Lp- lim
k→∞

ϕk,

and hence such thatf = w-D ′
Lp- lim

k→∞
ϕk.

Proof: Let f ∈ D ′
Lp . Let ψ ∈ D be such thatψ(t) ≥ 0

for everyt ∈ R, supp ψ = [−1, 1] and
∫
ψ = 1, and consider

the sequenceψk(t) = kψ(kt) ∈ D . It is easily seen that
s-D ′

L1- lim
k→∞

ψk = δ. Hence, sincef ∈ D ′
Lp , thenϕk = f ∗ψk

is a sequence of members ofDLp which strongly converges
to f in D ′

Lp (see the results on regularization in Section 8 of
Chapter 6 of [5]).

Lemma 4.2:Let 1 6 p < ∞. For everyϕ ∈ DLp there
exists a sequenceϕk ∈ D such thatϕ = s-D ′

Lp- lim
k→∞

ϕk, and

hence such thatϕ = w-D ′
Lp- lim

k→∞
ϕk.

Proof: Let ϕ ∈ DLp . Since, by Section 8 of Chapter 6
of [5] there exists a sequenceϕk of members ofD such
thatϕ = DLp- lim

k→∞
ϕk, and it is easily seen that convergence

in DLp implies strong convergence inD ′
Lp , then it isϕ =

s-D ′
Lp- lim

k→∞
ϕk.

Lemma 4.3:For everyϕ ∈ DL∞ there exists a sequence
ϕk ∈ D such thatϕ = w-D ′

L∞ - lim
k→∞

ϕk.

Proof: Let ϕ ∈ DL∞ . For k = 1, 2, . . . , let ηk ∈ D be
such that|ηk(t)| 6 1 for every t ∈ R, and thatηk(t) = 1 for
every t ∈ [−k, k]. Let ϕk = ηkϕ ∈ D .

Let σ ∈ DL1 . Every ϕkσ ∈ L1; for all τ ∈ R it is
lim

k→∞
ϕk(τ)σ(τ) = ϕ(τ)σ(τ); moreoverϕσ ∈ L1 and, for

everyk and everyτ ∈ R it is |ϕk(τ)σ(τ)| 6 |ϕ(τ)σ(τ)|. As
a consequence of Lebesgue Theorem it is

lim
k→∞

∫ +∞

−∞
ϕk(t)σ(t)dt =

∫ +∞

−∞
ϕ(t)σ(t)dt

i.e., lim
k→∞

〈ϕk, σ〉 = 〈ϕ, σ〉.
As a consequence of Lemma 4.1, 4.2 and 4.3, we obtain

that

for 1 6 p 6 ∞ it is Σ (D , w-D ′
Lp) =

Σ2 (D , w-D ′
Lp) = D ′

Lp

for 1 6 p <∞ it is Σ (D , s-D ′
Lp) =

Σ2 (D , s-D ′
Lp) = D ′

Lp

The analysis ofΣ (D , s-D ′
L∞) is slightly more difficult. Let

Ḋ ′
L∞ denote the space of distributionsf convergent to0 at in-

finity, i.e., of the distributionsf such thatD ′- lim
|τ |→∞

f(t− τ) =

0.
Lemma 4.4:It is Σ (D , s-D ′

L∞) ⊆ Ḋ ′
L∞

Proof: The statement follows from the second and the
last subsections of Section 8, Chapter 6 of [5].

Lemma 4.5:For everyf ∈ Ḋ ′
L∞ there exists a sequence

ϕk ∈ ḊL∞ such thatf = s-D ′
L∞ - lim

k→∞
ϕk.

Proof: Let f ∈ Ḋ ′
L∞ . Let ψk ∈ D and ϕk = f ∗

ψk ∈ DL∞ be as in the Proof of Lemma 4.1, so thatf =
s-D ′

L∞ - lim
k→∞

ϕk. SinceD ′- lim
|τ |→∞

f(t− τ) = 0, then for every

k and h it is lim
|t|→∞

Dh(f ∗ ψk)(t) = lim
|t|→∞

(f ∗Dhψk)(t) =

lim
|t|→∞

〈
f(t− τ), Dhψk(τ)

〉
= 0; hence everyϕk = f ∗ ψk ∈

ḊL∞ .
Lemma 4.6:For everyϕ ∈ ḊL∞ there exists a sequence

ϕk ∈ D such thatϕ = s-D ′
L∞ - lim

k→∞
ϕk.

Proof: Let ϕ ∈ ḊL∞ , and letηk ∈ D , ϕk = ηkϕ ∈ D
be as in the Proof of Lemma 4.3. LetB be a bounded subset
of DL1 , and letM0 be a positive real such thatsup{ ‖σ‖1 :
σ ∈ B } ≤M0. For everyσ ∈ B it is

|〈ϕk, σ〉 − 〈ϕ, σ〉| ≤
∫ +∞
−∞ |ηk(t)ϕ(t)− ϕ(t)| |σ(t)|dt ≤

≤ ‖ηkϕ− ϕ‖∞ ‖σ‖1 ≤M0‖ηkϕ− ϕ‖∞
Since lim

|t|→∞
ϕ(t) = 0, then it iss-D ′

L∞ - lim
k→∞

ϕk = ϕ.

By Lemma 4.6 it is

Σ1 (D , s-D ′
L∞) ⊇ ḊL∞

then, by Lemma 4.5 it is

Σ2 (D , s-D ′
L∞) ⊇ Ḋ ′

L∞

so that
Σ (D , s-D ′

L∞) ⊇ Ḋ ′
L∞

Hence, by Lemma 4.4 it is

Σ (D , s-D ′
L∞) = Ḋ ′

L∞ 6= D ′
L∞
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The above results can be summarized in the following
Theorem 4.1:(a) Let I be one of the following spaces

Lp 1 6 p <∞
D ′

Lp (strong convergence)1 6 p <∞
D ′

Lp (weak convergence) 1 6 p 6 ∞
E ′,S ′,D ′

thenΣ(D ,I ) = I .
(b) Let I be one of the following spaces

C , L∞,D ′
L∞ (strong convergence)

thenΣ(D ,I ) 6= I .
As a consequence of Theorem 3.2 and 4.1, we obtain the

following
Corollary 4.1: Let I be one of the spaces listed in part

(a) of Theorem 4.1, and letO be any output space (verifying
Assumption 1). Then any continuous LTI mapL : I → O
is completely described by its impulse response.

The next section proves that Corollary 4.1 cannot be
extended to any of the three spaces listed in part (b) of
Theorem 4.1.

V. THREE PATHOLOGICAL INPUT SPACES

In [2], Sandberg showed that there exist non null causal
continuous LTI maps

L : C → C

with impulse response∆ = 0. We recall that all theL in his
proof verify the conditions:L (ϕ) = 0 for everyϕ ∈ D , and
L (1) is a non zero constant function, where1 is the function
with constant value1.

The following Propositions 5.1 and 5.2 are corollaries of
this result. Propositions 5.1, with a different proof, is due to
Sandberg (see Theorem 2 and related remarks of [4]).

Proposition 5.1:There exist non null causal continuous LTI
maps

L : L∞ → L∞

with impulse response∆ = 0.
Proof: Let ϕ0 ∈ D be such that

supp ϕ0 ⊆ [0,+∞) ,

∫ +∞

−∞
ϕ0(t)dt = 1

By Theorem XXV of Chapter 6 of [5], for everyf ∈ L∞

it is f ∗ ϕ0 ∈ DL∞ , and, by the results on regularization in
Section 8, Chapter VI of [5], the linear map

L0 : L∞ → DL∞

defined byL0(f) = f ∗ ϕ0 is continuous. Sincesupp ϕ0 ⊆
[0,+∞), L0 is causal. HenceL0 is a causal continuous LTI
map.

ObviouslyDL∞ ⊆ C ⊆ L∞, and the maps

L1 : DL∞ → C , L3 : C → L∞

defined byL1(f) = f for every f ∈ DL∞ , andL3(f) = f
for everyf ∈ C , are causal continuous LTI maps.

Now let L2 : C → C be a causal continuous LTI map
such that:L2(ϕ) = 0 for every ϕ ∈ D , and L2(1) = 1—
existing by the result of Sandberg—, and consider the causal
continuous LTI map

L = L3L2L1L0 : L∞ → L∞

For everyϕ ∈ D , it is ϕ ∗ ϕ0 ∈ D ; henceL (ϕ) = 0. Since∫ +∞

−∞
ϕ0(t)dt = 1, it is 1 ∗ ϕ0 = 1; henceL (1) = 1, which

concludes the proof.
Proposition 5.2:Consider D ′

L∞ with the strong conver-
gence. There exist non null causal continuous LTI maps

L : D ′
L∞ → D ′

L∞

with impulse response∆ = 0.
Proof: The proof is identical to the proof of Proposi-

tion 5.1, merely substituting the spaceL∞ with the space
D ′

L∞ (strong convergence).
To understand why the argument of the proof of Proposi-

tion 5.2 cannot be applied to LTI maps continuous with respect
to the weak convergence, observe that the map

L0 : D ′
L∞ → DL∞

which must be used in the proof of Proposition 5.2 is con-
tinuous with respect to the strong convergence inD ′

L∞ but
is not continuous with respect to the weak convergence in
D ′

L∞ . Indeed, the sequenceδ(t − 1), δ(t − 2), . . . is weakly
convergent to0 in D ′

L∞ , but the sequenceδ(t− 1) ∗ϕ0(t) =
ϕ0(t− 1), δ(t− 2) ∗ ϕ0(t) = ϕ0(t− 2), . . . is not convergent
in DL∞ .
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