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Summary. In this paper we propose a new Large Eddy Simulation model derived
by approximate deconvolution obtained by means of wave-number asymptotic ex-
pansions. This LES model is designed for oceanic flows and in particular to simulate
mixing of fluids with different temperatures, density or salinity. The model -which
exploits some ideas well diffused in the community- is based on a suitable horizontal
filtering of the equations. We prove some a-priori estimates, showing certain math-
ematical properties and we present also the results of some preliminary numerical
experiments.
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1 Introduction

Mixing is one of the most important processes to understand transport of
pollutants as well as the details of thermohaline circulation. Despite the in-
crease in computational power, the scales in the ocean circulation can not
be all resolved simultaneously. Basin models are configured for O(1000km)
to O(10km), and regional or coastal models from O(100km) to O(1km), re-
quiring both sub-grid-scale parametrization. However, there exist small-scale
ocean flows (which take place below this inherently coarse numerical resolu-
tion) that often play a significant role in an accurate representation of the
large ocean scales. More precise motivations for the study of this physical
problem and the requirement of suitable numerical methods to handle all
scales is explained for instance in [26, 24]. The mixing phenomena can be
described mathematically by means of the Boussinesq system of partial dif-
ferential equations:
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∂tu + (u · ∇)u −
1

Re
∆u + ∇p = −

1

Fr2
ρ′e3, with ∇ · u = 0,

∂tρ
′ + (u · ∇)ρ′ −

1

Re Pr
∆ρ′ = 0.

(1)

The unknowns (u, p, ρ′) are velocity, pressure, and “salinity perturbation,”
respectively and e3 = (0, 0, 1). The non-dimensional parameters are the
Reynolds number Re, the Prandtl number Pr, and the Froude number Fr.
The problem we consider takes naturally place in an elongated domain (We
model the small portion of the ocean we consider as a parallelepiped)

D :=
{

x ∈ R3 : −π < x1, x2 < π, −d < x3 < d
}

with d << 1,

hence the boundary is flat and we enforce periodic boundary conditions on
the “horizontal variables” xh := (x1, x2). We use the subscript “h” to denote
differential operators acting only on the horizontal variables. In particular, we
use the following notation

∆h := ∂2
x1

+ ∂2
x2

and ∇h := (∂x1
, ∂x2

).

One of the features (which is well-know by practitioners) of this problem
is that filtering seems to be required only in the horizontal directions, be-
cause the mixing takes place mainly along these two directions. In a previous
work [3] we started analyzing it by means of stochastic parametrization and
Itô’s calculus. Since the problem we have in mind is that of stratified fluids,
another justification for the use of horizontal viscosities/filtering comes from
the study of Ekman boundary layers for rotating fluids (see [9] and references
therein) and in particular the system of the Navier-Stokes equations with
partial viscosity:

∂tu + (u · ∇)u −
1

Re
∆hu + ∇p = f, with ∇ · u = 0.

These are the main modeling motivations for the anisotropic LES method (2)
we will introduce. Other motivations, which are consequences of the mathe-
matical properties, will be explained in the sequel, but another main feature
of the new method we propose is that we do not need artificial boundary con-
ditions. The objective of the present paper is to propose a new LES method,
to prove existence of suitable classes of solutions, and to compare the results
of some 3D simulations performed with other LES methods.

2 An anisotropic Large Eddy Simulation model

One of the earliest LES models is the “Gradient” method (known also as
Taylor or Clark method and introduced in [21, 10]) which is based on an
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approximation of the subgrid scale term by means of asymptotic expan-
sion in wave-numbers. In the Gradient model the turbulent stress-tensor is
τG(w,w) = α2∇w∇wT , where

[

∇w∇wT
]

ij
:=

∑3
k=1 ∂xk

wi ∂xk
wj . The

derivation of this model and the basic results regarding the mathematical
analysis are collected in [5]. It is well-known that instabilities occur in the
numerical implementation and that some kind of smoothing must be added
in order to have effective simulations, see [17]. In particular, a filtered ver-
sion of the Gradient method is called Rational or4 Clark-α method, and the
stress-tensor reads as

τR-C(w,w) = (I − α2∆)−1α2∇w∇wT ,

cf. [34, 33, 31, 32]. The Rational method has been derived [16] by a ratio-
nal approximation of wave-numbers, while the Clark-α method is based on
analogies with the Helmholtz filtering. The mathematical analysis of these
models can be found in [8, 4]. Following the approach described in the in-
troduction we consider a smoothing acting only in the horizontal variables,
which can be performed by means of convolution with the following ker-

nel: gα(x) = 1
πα2 Exp

(

−
x2

1
+x2

2

α2

)

. By taking the 2D Fourier Transform, by
performing the Taylor series expansion, and by neglecting terms which are
formally of order of α4 one gets (apart multiplicative constants) the follow-
ing expression for the subgrid scale term τhG(w,w) = α2∇hw∇hw

T , where
[

∇hw∇hw
T
]

ij
:= α2

∑2
k=1 ∂xk

wi ∂xk
wj . We mainly consider the “horizontal

version” of the Rational-Clark-α method,

τ hR-C(w,w) = (I − α2∆h)−1α2∇hw∇hw
T .

From the computational point of view the inversion of a horizontal Laplacian
is less time/memory consuming than the usual one, but the main advantage
of the use of the horizontal Laplacian is that there is no need to introduce
extra/artificial boundary conditions for the Helmholtz operator and that the
value w on the boundary of the domain D can be imposed. The issue of the
boundary conditions for LES models is generally very complex, cf. [5, Ch.9],
and the challenging property of our approach based on horizontal filtering is
that part of the problem (due also to the particular shape of the domain)
is overcome. In the sequel, we sketch the main mathematical properties of
the space filtered Navier-Stokes equations approximated by the “horizontal
Rational/Clark” model

∂tw + (w · ∇)w −
1

Re
∆w + ∇ · (I − α2∆h)−1α2∇hw∇hw

T + ∇q = f, (2)

with ∇ · w = 0. Full details on the horizontal filtering, in conjunction with
other LES models (with more appealing and neat mathematical properties)
will appear in [2].

4 The two methods differ by a multiplicative factor, which is nevertheless critical
for the well-posedness results, see Remark 2 and also Section 5.
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2.1 Some properties of the horizontal Rational/Clark model

Given a vector field f, the averaged field (I − α2∆h)−1f is defined by solving
the following horizontal Helmholtz-Stokes problem:

u − α2∆hu + ∇q = f, with ∇ · u = 0 in D,

u · n = 0 on ∂D,
(3)

and throughout the paper α > 0 will be a fixed number. We use the notation

L2(D) :=

{

φ : D → R, xh-periodic, measurable, with

∫

D

|φ|2dx < +∞

}

,

and L2 := (L2(D))3. We use the same symbol ‖ . ‖ for the norm in both spaces.

Next, by setting ∂D :=
{

x ∈ R3 : −π < x1, x2 < π, x3 = ±d
}

we can defineH1
h :=

{

u ∈ L2 : ∇hu ∈ (L2(D))6, ∇ · u ∈ L2(D), u · n = 0 in H−1/2(∂D)
}

,

where n denotes the exterior unit normal vector on ∂D. Observe also that since
u has divergence in L2(D), then ∂u3

∂x3

= −∇h ·uh = −∂u1

∂x1

− ∂u2

∂x2

∈ L2(D). This
shows that some extra-regularity for the vertical component of the velocity is
obtained for free and this another interesting mathematical advantage.

Lemma 1 (See [2]). Let f ∈ L2 and α > 0. Then, there exists a unique
(u, q) ∈ H1

h × L2(D)/R solution of (3) and a constant c = c(α) such that

‖u‖ + α‖∇hu‖ + α‖∇u3‖ + ‖q‖ ≤ c‖f‖,

Remark 1. A relevant point (for a rigorous proof see again [2]) is that one
can prove that q = 0. Consequently one can solve three uncoupled Helmholtz
problem, instead of the Stokes problem. This motivates the name Helmholtz-
Stokes.

What is most important for understanding the mathematical properties of
solutions of (2) is the following lemma.

Lemma 2. For all sufficiently smooth vector fields w on D, xh-periodic, such
that ∇ · w = 0 in D and w · n = 0 on ∂D, it holds

∫

D

[

(w · ∇)w + ∇ · (I − α2∆h)−1α2∇hw∇hw
T
]

· (I − α2∆h)w dx = 0.

Proof. The proof is obtained by direct integration by parts (cf. [8, 4]). In fact,
as usual

∫

D (w · ∇)w ·w dx = 0 and next, observe that

∫

D

(w · ∇)w · (−α2∆hw) = α2
2

∑

k=1

∫

D

∂xk

[

(w · ∇)w
]

(∂xk
w)

= α2
3

∑

i,j=1

2
∑

k=1

∫

D

∂xk
wj∂xj

wi∂xk
wi dx,
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since one term vanishes by integration by parts. Moreover, we have
∫

D

∇ · (I−α2∆h)−1α2∇hw∇hw
T · (I−α2∆h)w = α2

∫

D

∇ ·
(

∇hw∇hw
T
)

w,

since in our setting the operator (I − α2∆h) is self-adjoint. Finally, a further
integration by parts (possible since w · n = 0 on ∂D) shows that

α2

∫

D

∇ ·
(

∇hw∇hw
T
)

w = −α2

∫

D

3
∑

i,j=1

2
∑

k=1

∂xk
wi∂xk

wj∂xj
wi,

and adding together the various terms we end the proof. ⊓⊔

Remark 2. Lemma 2 shows that (I−α2∆h)w is a “good multiplier” but again
it is relevant (concerning the boundary conditions) that it involves only deriva-
tives in the horizontal directions. Moreover, to be precise, it is important to
note that the Rational model corresponds to the following stress-tensor

τRLES(w,w) = (I −
α2

2
∆)−1α2∇w∇wT

In this case the “good multiplier” is (I − α2

2 ∆)w but the factor α2/2 does
not imply that the cancellation of the nonlinearities, as in Lemma 2. Results

in [4, 1] show that the term ∇ · (I − α2

2 ∆)−1α2∇w∇wT plays the same role
(in terms of Sobolev spaces inequalities) of the convective term. This prevents
from proving global-in-time estimates. This is one of the subtle differences
between the Clark-α and the Rational Model. Obviously the same occurs also
for the horizontal version of both methods.

The main result concerning system (2) is the following.

Theorem 1. Let be given w0 ∈ H1
h, and f ∈ L2(0, T ; L2). Then, there exists

a solution w (xh-periodic and vanishing on ∂D) in the sense of distributions
to system (2) such that

w, ∇hw, ∇w3 ∈ L∞(0, T ; L2) ∩ L2(0, T ; H1). (4)

Proof. We sketch the proof, that is based on the usual Galerkin method.
We look for an approximate solution wm =

∑m
k=1 ck(t) Ek(x), where Ek(x)

are eigenfunction of the Stokes operator with our boundary conditions. The
explicit form of the eigenfunctions is know, see [29, 23], but for our pur-
poses it is enough to observe that they are of the type ei (k1x1+k2x2)f(x3),
for k1, k2 ∈ Z and for certain smooth f , vanishing at x3 = ±d. This is
relevant, since ∆hEk still is an eigenfunction. Hence, the a priori estimate
obtained by testing the equation by (I − α2∆h)wm is completely justified.
By performing standard integrations by parts (possible by xh-periodicity)

we get
∫

D
∂tw

m · (I − α2∆h)wm = 1
2

d
dt

(

‖wm‖2 + α2‖∇hw
m‖2

)

and also
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−
∫

D
∆wm · (I − α2∆h)wm = ‖∇wm‖2 + α2‖∇∇hw

m‖2. Hence, application
of Lemma 2 shows the following differential inequality for wm:

1

2

d

dt

(

‖wm‖2 + α2‖∇hw
m‖2

)

+
1

Re

(

‖∇wm‖2 + α2‖∇∇hw
m‖2

)

≤ c‖f‖2.

Uniform bounds in m ∈ N and other standard arguments, see e.g.. [11], can be
used to prove that (a sub-sequence of) wm converges (as m → +∞) towards
a solution of (2). Regularity of w3 follows from ∇ · w = 0. ⊓⊔

Remark 3. The solution w has regularity properties which lie “in between”
those of weak and strong solutions for the NSE (In particular we are missing
the control of ∂x3

w in L∞(0, T ; L2).) Consequently we are not able to prove
uniqueness within this class of solutions. In addition, one cannot start a boot-
strapping argument to improve the regularity of w: by using as test function
(I− α2∆h)2wm (the counterpart of the H2-estimates in [8]) one does not get
good a priori estimates. Roughly speaking, it seems that multipliers which

are good for (w · ∇)w are not good for ∇ · (I − α2

2 ∆)−1α2∇hw∇hw
T and

vice versa. Based on these observations we conjecture that this is not the best
model (at least from the point of view of uniqueness and stability of solutions)
to be implemented with the horizontal filtering. Much better theoretical re-
sults can be proved in the framework of Approximate Deconvolution Models
(ADM), à la Stolz and Adams [30] and Layton Lewandowski [20] (cf. also
[2]). With these models the special expression of the stress-tensor allow us to
prove uniqueness using the same multiplier and just (4).

3 On the Boussinesq system

We consider now the Boussinesq system (1) and we study a LES model in
which the velocity equation is filtered, while not the equation for the salinity.
This because results of [19, 13] show that in presence of nonzero viscosity (and
also with vanishing diffusivity) the classical conditions which ensure regular-
ity of the NSE imply the continuation of smooth solutions of (1). Improved
theoretical results on this topic will appear in a forthcoming paper [6]. Here,
we consider the following horizontal LES model for the Boussinesq system
(still with ∇ ·w = 0)

∂tw + (w · ∇)w −
1

Re
∆w + ∇ · (I − α2∆h)−1α2∇hw∇hw

T

+∇q = −
1

Fr2
ρ′e3,

∂tρ
′ + (w · ∇)ρ′ −

1

Re Pr
∆ρ′ = 0.

(5)

With the same Galerkin approach of Sec. 2.1 one proves the following result.
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Theorem 2. Let be given (w0, ρ
′

0) ∈ H1
h × L2. Then, there exists a weak

solution to (5) (xh-periodic and with w vanishing on ∂D) such that

w, ∇hw, ∇w3, ρ′ ∈ L∞(0, T ; L2) ∩ L2(0, T ; H1)

The proof, is based on the following a-priori estimate (obtained by using as
test function ((I−α2∆h)w, ρ′) and by performing some integrations by parts)

1

2

d

dt

(

‖w‖2 + α2‖∇hw‖2 + ‖ρ′‖2
)

+
1

Re

(

‖∇w‖2 + α2‖∇∇hw‖2
)

+ ‖∇ρ′‖2 ≤ c(‖ρ‖2 + ‖f‖2),

and by using the same standard tools as before. Also in this case we are not
able to prove uniqueness, since the control of the whole ∇w is missing.

In the next section we explain how the results can be improved by changing
the class of models we consider. In particular, here we are testing the horizon-
tal Rational/Clark method since it is the one for which we have at disposal a
numerical code to perform preliminary assessment and we can precisely com-
pare the results with those previously obtained. In addition, we wanted to test
the performances of these methods in situations where the theoretical results
are not conclusive.

4 Perspectives for future studies

Even if the numerical simulations for (2)-(5) are quite nice, the results are not
completely satisfactory from the point of view of functional analysis. Good
theoretical results can be surely obtained if the regularization in (5) is done
with the Clark-α model instead of its horizontal counterpart, while less trivial
is the limit k := 1

Re Pr → 0+ for this model.
Moving to ADM we can easily show that the following system is well-posed

∂tw + ∇ · (I − α2∆)−1(w⊗ w) −
1

Re
∆w + ∇q = −

1

Fr2
ρ′ e3.

∂tρ
′ + (w · ∇)ρ′ −

1

Re Pr
∆ρ′ = 0.

(6)

This is the Boussinesq version of the Layton-Lewandowski model (or simpli-
fied Bardina) and good properties follow because with

(

(I − α2∆)w, ρ′
)

as
test function, one gets directly ∇u ∈ L∞(0, T ; L2), cf. [20]. Observe that no
regularization is needed in the equation for ρ′. The computational problems
with this model concern the boundary conditions, since the inversion of the
Laplace operator requires ad hoc boundary conditions on ∂D (Essentially it
works only in the periodic setting.) This observation is one of the main rea-
sons that led to the introduction of the horizontal version of this model in [2]
and for Boussinesq system, this will be naturally generalized in considering
the equation
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∂tw + ∇ · (I − α2∆h)−1(w ⊗ w) −
1

Re
∆w + ∇q = −

1

Fr2
ρ′ e3,

coupled with (6)2. From the mathematical point of view the resulting system
does not give the sufficient control on ∇w to prove uniqueness. Guided by
the results on math analysis (by using the same tools as in [2] we can prove
existence and uniqueness of strong solutions, globally in time) we conjecture
that a suitable ADM model for Boussinesq will be the following

∂tw + ∇ · (I − α2∆h)−1(w ⊗ w) −
1

Re
∆w + ∇q = −

1

Fr2
ρ′ e3,

∂tρ
′ + ∇ · (I − α2∆h)−1(ρ′ w) −

1

Re Pr
∆ρ′ = 0.

All theoretical results on the Boussinesq equations will be collected in the
forthcoming paper [6], while testing of all different methods will be the object
of future research.

5 Numerical Results

In this section, we investigate how the horizontal RLES model and the hor-
izontal Clark-α models perform in the numerical simulation of 3D turbulent
stratified flows. To this end, we compare the performance of four LES models:
1) the RLES model, 2) the Clark-α model, 3) the horizontal RLES model, and
4) the horizontal Clark-α model - against DNS results. The comparison crite-
rion is simple: the closer the LES results are to the benchmark DNS results,
the better the LES model. To ensure a fair assessment of the performance of
the LES models, we also included under-resolved numerical simulations with-
out any LES modeling, which we denoted by DNS∗. Thus, it is expected that
the LES models produce better results than the DNS

∗, at the very least.
Although most of the theoretical developments in this paper have been

centered around the NSE (see also [2]), the numerical illustrations in this sec-
tion are for the Boussinesq equations, since as explained in the introduction
it is one of the commonly used mathematical models in the numerical inves-
tigation of oceanic and atmospheric flows. The model setup is similar to that
in [25], which contains a detailed discussion of the boundary conditions, initial
conditions and parameters used. We now briefly list them; for more details,
the reader is referred to [25].

We consider the lock-exchange problem, a popular benchmark problem
for the numerical investigation of mixing in stratified flows [26, 24, 25]. The
computational domain is −L

2 ≤ x ≤ L
2 , 0 ≤ y ≤ W , and 0 ≤ z ≤ H , where

L/H = 2 and W/H = 1. At the top, bottom, left and right boundaries, no-
flow and free-slip boundary conditions are used for the velocity components
(u, v, w), while no-flux (insulation) conditions are used for the density pertur-

bation ρ′, i.e.,
∂w

∂n
= 0; (u, v, w) · n = 0;

∂ρ′

∂n
= 0, where n is the normal to
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the boundary. In the horizontal directions, periodic boundary conditions are
used both for velocity and density perturbation fields. u(x, 0, z) = u(x, W, z);
v(x, 0, z) = v(x, W, z); ρ′(x, 0, z) = ρ′(x, W, z). Since α → 0+ near the bound-
ary, the filtered variables approach the unfiltered variables. Thus, for the LES
models, we used the same boundary conditions as those used for the DNS.
The non-dimensional parameters have the same values as those in [25]: The

Froude number is Fr = 2−
1

2 , the Prandtl number is Pr = 7, and the Reynolds
number is Re = 104. The numerical study is conducted using Nek5000, which
is a spectral element code developed by Paul Fischer and his group [27, 22, 14].
All experiments were run on Virginia Tech’s SystemX, based on 2200 Apple
G5 processors with 2.3 GHz and InfiniBand interconnect. The accuracy of the
LES models is evaluated through a posteriori testing. The main measure used
is the background/reference potential energy (RPE), which exactly quantifies
mixing in an enclosed system [25]. RPE is the minimum potential energy that
can be obtained through an adiabatic redistribution of the water masses. Fi-
nally, for the RLES model, we chose γ = 3 and γT = 15, cf. [24, 25] for the
notation.

There are also a couple of significant differences from the previous stud-
ies [24, 25]. First, in this study we are integrating much longer in time. As
explained next, this has an effect on the conclusions regarding the perfor-
mance of the LES models. Second, we implemented the horizontal version
of the RLES and Clark-α models. Although the gradient tensor has been
implemented in its horizontal form, the Helmholtz operator is still in its origi-
nal isotropic form. We are currently implementing its anisotropic (horizontal)
version.

The results of our numerical simulations are presented in figures 1, 2, and
3. In Figure 1, we present snapshots of DNS for the density perturbation ρ′ at
different times. This time evolution of the density perturbation will represent
the benchmark for our LES runs.

In figure 2, we present snapshots of the density perturbation ρ′ at t = 3.0.
Notice that all four models (horizontal RLES, horizontal Clark-α, DNS, and
DNS∗) produce practically indistinguishable results.

Finally, in figure 3 we investigate the ability of the LES models to re-
produce the DNS RPE curve. We also compare the isotropic and horizontal
versions of the LES models. The behavior of the LES models depends on the
time-interval considered. At the beginning of the numerical simulation, both
LES models (horizontal RLES and horizontal Clark-α) produce better results
than the under-resolved simulation (DNS∗) and the horizontal RLES model
is more accurate than the Clark-α model. Towards the end of the simulation,
however, the quality of the results produced by the LES models degrades.
Indeed, the LES models yield RPE curves that are farther away from the
benchmark RPE curve than the RPE curve produced by the under-resolved
DNS∗ runs. We emphasize that this behavior was not displayed in our previ-
ous studies [24, 25], since there we did not integrate as long in time as in our
present study.
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These new results open a new research avenue that we are currently pursu-
ing. On the other hand, the preliminary tests of this report show that the new
methods we propose are promising and may be used to improve performances
of previous simulations. Further analysis and tests are running, and we hope
to give some new insight in the numerical simulation of mixing phenomena
involved in ocean flows.

Fig. 1. Density perturbation snapshots. DNS at: (a) t=0.8; (b) t=1.2; (c) t=3.0;
(d) t=5.0; and (e) t=45.0.
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Fig. 2. Density perturbation snapshots. (a) DNS; (b) DNS
∗; (c) Clark-α horizontal;

and (d) RLES horizontal.

Fig. 3. RPE curves for DNS, DNS
∗, Clark-α horizontal, RLES horizontal, Clark-α,

and RLES.
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18. Härtel C, Meiburg E, Necker F (2000) J. Fluid Mech. 418:189–212
19. Ishimura N, Morimoto H (1999) Math. Models Methods Appl. Sci. 9:1323–1332
20. Layton WJ, Lewandowski R (2008) Discrete Contin. Dyn. Syst. Ser. B 6:111–128
21. Leonard A (1974) Adv. in Geophysics 18A:237–248
22. Maday Y, Patera AT (1989) Spectral element methods for the incompressible

Navier-Stokes equations. In: Noor AK and Oden JT (eds) State–of–the–Art
Surveys in Computational Mechanics, ASME, N.Y.

23. Nerli A, Camarri S (2006) Meccanica 41:671–680
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